基于夜光遥感和小区POI的住宅发展与经济增长的空间耦合研究
作者简介:潘思东(1965- ),女,博士生,高级工程师,主要从事空间数据分析、矿产普查、经济调查研究及实验教学工作。E-mail:pansd65@163.com
收稿日期: 2016-08-04
要求修回日期: 2016-11-08
网络出版日期: 2017-05-20
基金资助
江西省省直项目(2014085041)
武汉市第三次全国经济普查项目(2015086013)
Spatial Coupling between Housing Development and Economic Growth Based on Night Light Remote Sensing and Residential POI
Received date: 2016-08-04
Request revised date: 2016-11-08
Online published: 2017-05-20
Copyright
针对城市住宅业发展与其经济增长之间的单向或双向因果关系问题,有关学者利用宏观统计分析的方法得到了不同的结论。本文通过构建二者的时空数据集,在城市内部微观层面上剖析了二者的耦合联系及其空间差异性,以期在细尺度上解释二者之间的关系。本文选取郑州市作为研究区,提出了一种基于夜光遥感数据的GDP空间化估算方法,进而生成GDP时空数据集;基于住宅小区POI点数据对城市住宅进行空间密度估计,得到住宅小区的时空分布数据集;最后对GDP和住宅建设密度进行了空间互相关分析,探究住宅发展与经济增长像元尺度上的共变趋势。结果表明:与前人的宏观研究论断不同,耦合分析结果显示住宅业发展与经济增长之间的关系在城市内部具有空间差异性,两者既存在相互影响的区域,也存在无相关的区域;耦合协调关系极显著的区域约占两成,且主要位于市属区和县域中心区;耦合不显著和不相关的区域超过七成,大部分位于市属县域。
潘思东 . 基于夜光遥感和小区POI的住宅发展与经济增长的空间耦合研究[J]. 地球信息科学学报, 2017 , 19(5) : 646 -652 . DOI: 10.3724/SP.J.1047.2017.00646
Against the one-way or two-way causality between urban housing development and economic growth, different conclusions are obtained by the relevant scholars via macro statistical analysis methods. In this paper, I explained the relationship between the two mentioned above at the fine scale, through construction of their temporal and spatial data sets and I analyzed their coupling relation and spatial difference at micro level of the city. Taking Zhengzhou City as an example, I proposed an estimation method of grid GDP (Gross Domestic Product) based on luminous index data to generate the spatial-temporal GDP data sets. Also, the spatial correlation analysis is carried out between the spatial-temporal GDP data sets and the spatial-temporal residential quarter data sets which are estimated by the Point of Interest (POI) of residential quarters. Different from previous macro studies, coupled analysis shows that the relationship between the development of housing industry and economic growth has spatial differences in the inner city. There are mutual influence areas in some places and uncorrelated areas in some other places. The grids of significant coupling coordinative relationship account for about 20%, and mainly are located in the municipal district and county central district while the grids that is not significant and not related account for over 70%, and are located in the counties mostly. In this paper, the spatial distribution of urban residence was made by the density estimation of the residential POI with construction area attribute, which is not available in the traditional social economic statistical data. I found that this kind of spatial distribution data of real estate can be used to study the spatial and temporal changes of urban housing, and make up for the deficiency of macro analysis.
Tab. 1 Study data and their description表1 研究数据及其描述 |
数据类型 | 描述 | 目的 |
---|---|---|
公里网格GDP数据 | 2005年和2010年共2期 | 探究GDP与夜光指数之间的函数关系 |
植被指数数据 | 2000 - 2013年共14期 | 对夜光遥感数据进行去饱和修正 |
夜光遥感数据 | 2000 - 2013年共14期 | 确定函数类型,估算GDP空间化数据集 |
统计年鉴数据 | 2000 - 2013年共14期 | 验证函数类型,估算GDP空间化数据集 |
住宅区POI数据 | 2000 - 2013年共14期 | 计算住宅区域时空分布数据集,并与GDP数据集进行耦合分析 |
Fig. 1 Grid GDP and luminous remote sensing data in 2010图1 2010年公里网格GDP和夜光指数数据 |
Fig. 2 Determination of the functional relation type between grid GDP and luminous remote sensing data based on correlation analysis图2 基于相关分析的公里网格GDP和夜光遥感数据的函数关系类型确定 |
Fig. 3 The regression analysis between GDP and the sum of luminous value based on the optimal function transformation图3 最优函数变换的夜光值总和与GDP总量的回归分析 |
Fig. 4 Spatial distribution of the average annual increment of residence and GDP in 2000-2013图4 2000-2013年住宅及GDP年均增量空间化分布 |
Fig. 5 Spatial correlation analysis of housing construction and economic development图5 住宅建设与经济发展的空间相关分析 |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
[
|
[3] |
[
|
[4] |
[
|
[5] |
[
|
[6] |
[
|
[7] |
|
[8] |
|
[9] |
[
|
[10] |
[
|
[11] |
[
|
[12] |
|
[13] |
|
[14] |
[
|
[15] |
|
[16] |
|
[17] |
[
|
[18] |
[
|
[19] |
[
|
[20] |
|
[21] |
[
|
[22] |
[
|
[23] |
|
[24] |
|
[25] |
|
/
〈 | 〉 |