城市行道树绿视量指数研究
作者简介:张佳晖(1992-),女,硕士生,主要从事城市绿色空间度量与评价方面研究。E-mail: zhangjh09@radi.ac.cn
收稿日期: 2017-03-06
要求修回日期: 2017-04-05
网络出版日期: 2017-06-20
基金资助
国家自然科学基金项目(41471310)
广东省科技计划项目(2016A050502065)
四川省科技支撑计划项目(2016JZ0027)
Study on Urban Green View Index
Received date: 2017-03-06
Request revised date: 2017-04-05
Online published: 2017-06-20
Copyright
本文立足于街道景观视觉质量定量研究不足,以行人的视觉感受为出发点,创新性地提出一种用于衡量城市行道树的绿量可视性的绿视量指数。该方法通过模拟人眼视野范围内周围树木的真实场景,定量描述了行人视角下所能捕获的行道树绿色面积,以及这种目视接触概率的空间分布差异。研究结果表明:对于复杂的城市街道景观,绿视量指数能够很好地反映出行道树的空间分布、树冠三维结构、建筑物遮挡、以及观察距离对行人感知城市绿量产生的影响。本方法充分利用多源信息,基于计算机的自动解译,实现了街道场景内任意位置的绿视量高精度计算,大大降低了人力成本,可用作大范围多区域间的对比评价。研究成果证实了多源遥感数据在评价道路绿化景观视觉效果上的有效性,可为环境规划设计、绿化精细化管理、人居环境改善提供技术支撑。
张佳晖 , 孟庆岩 , 孙云晓 , 孙震辉 , 张琳琳 . 城市行道树绿视量指数研究[J]. 地球信息科学学报, 2017 , 19(6) : 838 -845 . DOI: 10.3724/SP.J.1047.2017.00838
By identifying the research gap in the quantitative study of the visual quality of street landscape, a new Green View Index is proposed to assess the human-viewed street. The newly developed method describes the green-appearance area of street greenery that can be captured and its spatial distribution via simulating the real scene of the surrounding trees in the human eye field. Results indicate that the proposed Green View Index can reflect the impact of the size of tree canopy, layout of buildings, and distances between trees and viewers on the visual perception of street greenery in complex road scenes. The advantages of this method are as follows: by making full use of multi-source information, the green view of any location can be calculated with high precision based on automatic interpretation, which greatly reduces manual effort and errors and facilitates multi-regional comparative evaluation. The effectiveness of multi-source remotely sensed data in evaluating the visual effect has been proved, and the new Green View Index can be a relatively objective measurement in guiding urban landscape planning and management.
Key words: Green View Index; street greenery; visual quality; LiDAR
Fig. 1 Treetop extraction and canopy delineation results图1 树顶与树冠轮廓边界提取结果 |
Fig. 2 Building extraction and 3D modelling results图2 建筑物信息提取结果与三维建模示意图 |
Fig. 3 Spatial and geometric relationship between the viewer and the tree canopy图3 观察者与行道树的空间几何关系示意图 |
Fig. 4 A scatter plot of the calculated Green View Index vs the reference values图4 绿视量指数精度验证结果散点图 |
Fig. 5 Histogram of the calculation results with highlighted sample sites referring to their location图5 绿视量计算结果频数分布直方图与对应采样点位置分布图 |
Fig. 6 Results of Green View Index calculation图6 行道树绿视量计算结果 |
Tab. 1 Statistical analysis between Green View Index and canopy coverage variables表1 绿视量计算结果与行道树分布状况相关性统计 |
空间范围 | 绿视量—TTN | 绿视量—TCA | 绿视量—ATH | 绿视量—APA |
---|---|---|---|---|
可视区域 | 0.567 | 0.672 | 0.658 | 0.764 |
50 m缓冲区 | 0.391 | 0.443 | 0.401 | 0.589 |
100 m缓冲区 | 0.142 | 0.287 | 0.213 | 0.326 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
[
|
[9] |
[
|
[10] |
[
|
[11] |
[
|
[12] |
|
[13] |
|
[14] |
|
[15] |
[
|
[16] |
|
[17] |
|
[18] |
|
/
〈 | 〉 |