全球36 km格网土壤水分逐日估算
作者简介:贾艳昌(1986-),男,河南平顶山人,博士生,主要从事岩土灾害监测及其稳定性评价研究。E-mail: 791845146@qq.com
收稿日期: 2016-10-24
要求修回日期: 2017-02-22
网络出版日期: 2017-06-20
基金资助
国家自然科学基金项目(41372370、41572274)
Daily Estimate of Global 36 km Grid Soil Moisture
Received date: 2016-10-24
Request revised date: 2017-02-22
Online published: 2017-06-20
Copyright
土壤水分是陆面生态系统和能量循环的核心变量之一,利用微波遥感技术获得的土壤水分产品的时间分辨率一般是2-3 d,因此精确地获得具有较高时间分辨率的土壤水分成了人们关注的焦点。本文尝试将SMAP (the Soil Moisture Passive and Active)土壤水分和MODIS光学数据相结合,利用广义回归神经网络进行全球36 km土壤水分的估算,提升SMAP土壤水分的时间分辨率。结果显示,广义回归神经网络估算土壤水分与SMAP保持了高相关性(r = 0.7528),但其却保留了较高的误差 (rmse = 0.0914 m3/m3)。尽管如此,估算的土壤水分能够很好地保持SMAP土壤水分的整体空间变化,并且提升了土壤水分的时间分辨率(1 d)。此处,本文研究了SMAP土壤水分与MODIS光学数据之间的关系,这对今后利用机器学习进行SMAP土壤水分降尺度研究提供了重要的参考价值。
贾艳昌 , 谢谟文 , 姜红涛 . 全球36 km格网土壤水分逐日估算[J]. 地球信息科学学报, 2017 , 19(6) : 854 -860 . DOI: 10.3724/SP.J.1047.2017.00854
Soil moisture is one of the core variables in land surface ecosystem and energy cycle. For the strong penetration of the cloud, rain and atmosphere, microwave remote sensing has advantages of the high precision in soil moisture retrieval. Currently, there are many passive microwave sensors or satellites used for surface soil (<5 cm) moisture observations, such as NASA's AMSR-E (The Advanced Microwave Scanning Radiometer-Earth Observing System) and SMAP (the Soil Moisture Passive and Active) and the European Space Agency SMOS (The Soil Moisture and Ocean Salinity). Although the use of microwave sensor can get higher precision of soil moisture products. The errors of SMAP 36 km soil moisture products can be less than 0.04 m3/m3. The 2~3 days revisited time restricts the applications that need the soil moisture products with higher temporal resolution (1 days). Therefore, it has been drawn more and more attention to get the accurate soil moisture with higher temporal resolution for the global weather prediction. Although the SM retrieval from MODIS data has higher error than retrieval from passive microwave data, the temporal resolution of MODIS data (1 day) is higher than the passive microwave data. For the different advantages of MODIS and passive microwave data, the combination of the two data for soil moisture retrieval may get the SM products with the MODIS temporal resolution and the similar accuracy or similar spatial variation of passive microwave data. In this study, we attempt to combine SMAP 36 km soil moisture product and MODIS optical/thermal infrared data to estimate the global 36 km soil moisture. This improve the temporal resolution of SMAP soil moisture from the 2~3 days to 1 day. By using the generalized regression neural network (GRNN) method, we simulated the relationship of SMAP soil moisture with MODIS global surface temperature and the surface reflectance products. Then we estimated the global 36 km soil moisture using the GRNN simulated relationship. In order to prevent overfitting of GRNN, all sample data according to the ratio of 0.8:0.2 is divided into training dataset and validation dataset. With the increase of the spread factor, the performance of GRNN prediction of the validation dataset shows a decreasing trend after the first increase, and GRNN obtained the maximal correlation coefficient (r) and root mean square error (rmse) with 0.02 of the diffusion factor. Finally, the well trained GRNN is used to estimate the global 36 km soil moisture. The results show that the accuracy of the GRNN for soil moisture estimate has a high correlation with SMAP (r=0.7528), but it retains a high error (RMSE=0.0914 m3/m3). For the cloud contamination of MODIS data, there has a part of loss of GRNN 36 km soil moisture estimate. Nevertheless, the GRNN estimated soil moisture can be very good to maintain the overall spatial variation of SMAP soil moisture, and enhance the temporary resolution of soil moisture from 2~3 days to one day. Besides, the relationship between SMAP and MODIS data is also studied in this paper, which can provide a significant reference for SMAP 36 km soil moisture downscaling by the machine learning.
Key words: SMAP; Soil moisture; Estimate; GRNN; MODIS
Tab. 1 The SMAP soil moisture and MODIS data used in this study表1 研究所需的遥感数据产品 |
数据类型 | 数据名称 | 空间分辨率 | 时间分辨率 | 产品 |
---|---|---|---|---|
MODIS | MOD11C1 | 0.05°×0.05° | 每天 | 地表温度 |
MOD13C1 | 16 d | 反射率 | ||
SMAP | SMAP L3 | 36 km | 2-3 d | 土壤水分 |
Fig. 1 SMAP L3 36 km soil moisture on May 7, 2015( m3/m3)图1 2015年5月7日的SMAP L3 36 km土壤水分(m3/m3) |
Fig. 2 MODIS land surface temperature and red band reflectance on May 7, 2015图2 2015年5月7日的MODIS 地表温度及红光波段反射率 |
Fig. 3 The network structure of GRNN图 3 广义回归网络结构 |
Fig. 4 Correlation coefficient (r) and root mean square error (rmse) of GRNN validation dataset with different spread factors.图 4 不同扩散因子下的GRNN验证集的相关系数(r)及均方根误差(rmse) |
Tab. 2 The overall evaluation of GRNN estimated 36 km soil moisture against SMAP 36 km soil moisture表2 GRNN 36 km土壤水分的总体评价 |
训练精度 | 验证精度 | 总体精度 | |
---|---|---|---|
r | 0.7658** | 0.7020** | 0.7528** |
rmse/ (m3/m3) | 0.0890 | 0.1005 | 0.0914 |
样本量 | 18 715 | 4678 | 23 393 |
注:**表示通过了p-value < 0.01的显著性检验 |
Tab. 3 The evaluation of GRNN estimated 36 km soil moisture by IGBP land use types表3 IGBP 土地利用类型GRNN 36 km土壤水分的评估 |
IGBP类型 | 编码 | r | rmse/(m3/m3) | 样本量 |
---|---|---|---|---|
常绿针叶林 | 2 | 0.4362** | 0.1323 | 594 |
常绿阔叶林 | 3 | 0.3723** | 0.1585 | 1128 |
落叶针叶林 | 4 | -0.1001 | 0.0639 | 213 |
落叶阔叶林 | 5 | 0.4411** | 0.1024 | 145 |
混交林 | 6 | 0.3816** | 0.1250 | 2913 |
开放灌丛 | 8 | 0.6111** | 0.0457 | 2854 |
多树的草原 | 9 | 0.4015** | 0.1135 | 1232 |
稀树的草原 | 10 | 0.6570** | 0.0801 | 1730 |
草原 | 11 | 07263** | 0.0739 | 2703 |
作物 | 13 | 0.6475** | 0.0848 | 2962 |
作物和自然植被的镶嵌体 | 15 | 0.5377** | 0.1118 | 1187 |
裸地或低植被覆盖地 | 17 | 0.7623** | 0.0312 | 5332 |
注:**表示通过了p-value < 0.01 的显著性检验 |
Fig. 5 The scatterplot between GRNN estimated soil moisture and SMAP 36 km soil moisture图5 GRNN估算土壤水分与SMAP 36 km土壤水分的散点图 |
Fig. 6 Spatial distribution of the difference (GRNN-SMAP) between GRNN estimated and SMAP 36 km soil moisture (m3/m3)图6 GRNN估算土壤水分与SMAP 36 km土壤水分的差值(GRNN-SMAP)空间分布图(m3/m3) |
Fig. 7 GRNN estimated global 36 km soil moisture (m3/m3)图7 GRNN 估算的36 km全球土壤水分(m3/m3) |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
[
|
[3] |
[
|
[4] |
[
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
[
|
[10] |
[
|
[11] |
[
|
[12] |
[
|
[13] |
[
|
[14] |
[
|
[15] |
[
|
[16] |
|
[17] |
[
|
[18] |
[
|
[19] |
|
/
〈 | 〉 |