面向轨迹起止特征点数据的多比例尺可视化方法
作者简介:金 澄(1976-),男,高级工程师,研究方向为地理信息服务。E-mail: jinchengno1@163.com
收稿日期: 2017-01-05
要求修回日期: 2017-05-17
网络出版日期: 2017-08-20
基金资助
国家自然科学基金项目(41401447)
国土资源部城市土地资源监测与仿真重点实验室开放基金项目(KF-2016-02-020)
国家高技术研究发展计划(“863”)项目(2015AA124103)
A Multi-scale Visualization Method for the Trajectory Origin-Destination Data
Received date: 2017-01-05
Request revised date: 2017-05-17
Online published: 2017-08-20
Copyright
本研究以北京市出租车GPS轨迹数据为例,建立了一种面向轨迹起止特征点(Origin-Destination, OD)的多比例尺可视化表达方法。首先,依据轨迹点描述信息提取OD特征点,并进行无效点清理与排除;然后,利用分布密度指标和辅助行政区划数据实施聚类分析,对OD数据分布空间进行区域划分;最后,定义参量统计各区域间OD数据隐含的流向特征,并设计专门符号进行可视化。其中,通过调整最小区域面积控制参数建立与街区、商圈、城区等不同层次地理单元相对应的区域划分,从而获得涵盖3种不同级别的OD数据多比例尺表达结果。试验结果表明,本文提出的方法能够对轨迹OD数据进行有效降维,获取不同尺度下区域间的车辆移动关系,对揭示车流人流时空交互模式及辅助决策有参考意义。
金澄 , 陈瑗瑗 , 杨敏 . 面向轨迹起止特征点数据的多比例尺可视化方法[J]. 地球信息科学学报, 2017 , 19(8) : 1011 -1018 . DOI: 10.3724/SP.J.1047.2017.01011
Based on the taxi trajectory data from the city of Beijing, this study proposes a multi-scale visualization approach for trajectory OD (Origin-Destination) data. First, we extract OD points from initial trajectory raw data eliminating invalid points. Then, the distribution space of OD data is subdivided by density analysis and administrative unit aggregation. Finally, we define relevant parameters to summarize inherent OD flow pattern and customize their presentation of multi-scale visualization. In the process above, three regionalization results, which correspond to block level, business district level and district level, are obtained by setting different values of the minimal area of the aggregated region. Therefore, representations at three different scales can be outputted. The experimental results confirmed that our method could effectively achieve the reduction of trajectory big data and reveal mobility pattern, which is helpful for future decision making.
Fig. 1 Samples of trajectory Origin-Destination data图1 轨迹OD数据示例 |
Tab. 1 The original records of taxi trajectory data表1 出租车轨迹数据原始记录 |
字段名称 | 数据说明 | 数据示例 |
---|---|---|
V_ID | 车辆标识 | 206400 |
Longitude | GPS经度/° | 116.4243011 |
Latitude | GPS纬度/° | 40.0727348 |
Time | GPS时间 | 20121101095636 |
Event | 触发事件(0=变空车,1=变载客,3=其它) | 1 |
SerState | 运营状态(0=空车,1=载客,2=驻车,3=停运,4=其他) | 1 |
Speed | GPS速度/(km/h) | 43 |
GPSState | GPS状态(0=无效,1=有效) | 1 |
Fig. 2 Steps of regional units classification图2 区域单元划分原理与步骤 |
Fig. 3 Statistics of OD flow characteristics图3 OD流向特征统计参量示意图 |
Fig. 4 The original trajectory data and the extracted Origin-Destination points图4 原始出租车轨迹数据和提取的OD数据 |
Fig. 5 Results of regional units and flow patterns at different scales图5 不同比例尺下的分区结果及提取的流向关系 |
Fig. 6 Visualization of OD flow across different sub-regions图6 OD数据区域间流向关系的符号可视化结果 |
Fig. 7 Visualization of the flow characteristics at different scales图7 OD数据流向信息在不同比例尺下的表达效果 |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
|
[3] |
[ Long Y, Zhang Y, Cui C Y. Identifying commuting pattern of Beijing using bus smart card data[J]. Acta Geographica Sinica, 2012,67(10):1339-1352. ]
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
[
|
[19] |
|
[20] |
|
[21] |
[
|
/
〈 | 〉 |