变异函数对泛克里金法的细粒子比星-地融合影响研究
作者简介:赵爱梅(1991-),女,河北人,硕士生,研究方向为大气遥感。E-mail: zhaoam@radi.ac.cn
收稿日期: 2017-04-12
要求修回日期: 2017-05-16
网络出版日期: 2017-08-20
基金资助
国家自然科学基金项目(41601386、41671367)
高分对地观测系统重大专项(30-Y20A39-9003-15/17)
Impact of Variogram Parameters on Merging Satellite and Ground-Based FMF Based on Universal Kriging
Received date: 2017-04-12
Request revised date: 2017-05-16
Online published: 2017-08-20
Copyright
泛克里金方法进行星-地融合可有效提高MODIS FMF的精度,然而由于地基站点稀少造成融合前需要利用长时间序列数据获取变异函数的主要参数(块金值、基台值和变程),故不能满足基于卫星瞬时观测遥感PM2.5的PMRS模型的需求。本文对2010年12月至2016年11月中国中东部地区的数据进行了变异函数参数的计算和分析,结果表明不同年份相关距离变化情况相一致,夏季显著高于冬季,基台值呈现与相关距离相反的趋势。通过利用2016年冬季变异函数中的变程(控制实验)和2011-2016年冬季变异函数的变程季均值(对比实验)作为初始值,对2016年冬季中国中东部地区MODIS FMF和地基FMF进行了融合,弃一交叉验证结果显示控制实验下FMF融合结果与地基FMF偏差最大值由0.552降低至0.198左右(对比实验下最大偏差为0.218),平均误差相近(分别为0.070、0.080)。2种实验估算的PM2.5平均值(分别为77.6、78.8 μg/m3)仅相差1.2 μg/m3,与在位测量的PM2.5观测值相比,误差平均值均为37.4 μg/m3。由此可见,融合结果对初始变程值的变化敏感度不高,在季节相同的情况下,变程的多年季均值可有效替代相应季节的变程值。
赵爱梅 , 张莹 , 李正强 , 李凯涛 , 马䶮 . 变异函数对泛克里金法的细粒子比星-地融合影响研究[J]. 地球信息科学学报, 2017 , 19(8) : 1089 -1096 . DOI: 10.3724/SP.J.1047.2017.01089
In order to improve the estimation accuracy of fine particulate matter (PM2.5) near the surface, fine mode fraction (FMF), one of the key parameters in the PM2.5 remote sensing method (PMRS) should be improved due to its significant error (more than 0.3). Merging MODIS FMF and ground-based FMF (AERONET&SONET) using the universal kriging (UK) method can effectively improve the accuracy of MODIS FMF over land. However, the parameters (the nugget, the sill value and the range parameter) in exponential variogram function need to be obtained using long-term MODIS FMF data because of the sparse ground-based sites, which cannot meet the need of PMRS based on instantaneous remote sensing estimates. In this study, we calculate the parameters in exponential variogram model and analyze the parameters’ variation using all MODIS data over six years from December 2010 to November 2016. Results show that the seasonal variations of correlation lengths during different years are consistent with each other. Correlation lengths in summer are significantly longer than any other three seasons while the sill values show an opposite trend, suggesting that FMF in summer has a smaller variation than the other three seasons. Furthermore, the other three seasons need more ground-based data than summer when merging MODIS FMF and ground-based FMF data. To quantify the impact of parameters in exponential variogram function on FMF fusion results and achieve instantaneous FMF fusion products, we use the range parameter in winter of 2016 (control test, denoted as CRT) and the mean value of range parameter of 6 winters over 2011-2016 (comparison test, denoted as CMP) as initial values separately to merge MODIS FMF and ground-based FMF. Leave-one-out cross-validation results show that the maximum deviation between FMF fusion results and ground-based FMF in CRT is 0.198 (in CMP is 0.218), significantly decreased compared to the maximum deviation between MODIS FMF and ground-based FMF (0.552). The mean error between FMF fusion results in CRT and ground-based FMF is close to that between FMF fusion results in CMP and ground-based FMF (0.070 vs 0.080). Then, we apply the fusion results in CRT and CMP separately to estimating PM2.5 mass concentration near the surface in combination with the same auxiliary data such as relative humidity, the planet boundary layer height. The estimated PM2.5 mass concentration near the surface has a slight discrepancy with a value of 1.2 μg/m3(77.6 μg/m3 vs 78.8 μg/m3)between CRT and CMP. In addition, compared with in-situ PM2.5 mass concentration measurements, the mean error in CRT is equal to that in CMP (37.4 μg/m3 vs 37.4 μg/m3). It can be concluded that the seasonal average of range parameter for many years can be a substitute for the range parameter in the same season since the FMF fusion results and the PM2.5 estimates are insensitive to range parameter. As a result, we can obtain instantaneous FMF fusion results to improve the estimate accuracy of PMRS when we get more satellite FMF data in the future.
Fig.1 The study area and ground-based observation locations图1 研究区域及所用地基站点分布 |
Fig.2 Spatial experimental variograms (solid circles) and the fitted exponential models (solid lines)图2 空间实验变差(实点)与拟合的指数模型(实线) |
Fig.3 The variation of parameters in exponential variogram图3 变异函数参数随时间变化图 |
Tab.1 The seasonal mean value of parameters in variogram function over six years表1 6年变异函数参数季节平均变化表 |
平均值(标准偏差) | |||||
---|---|---|---|---|---|
冬 | 春 | 夏 | 秋 | 年 | |
基台sill | 0.139(0.035) | 0.134(0.027) | 0.082(0.017) | 0.113(0.031) | 0.117(0.036) |
变程r/km | 1039(984) | 759(620) | 1712(2002) | 899(1236) | 1102(1349) |
Tab. 2 Comparison between pre-fusion and Leave-One-Out cross-validation results at ground-based locations表2 融合前和弃一法验证后与地基结果对比 |
地基 FMF | MODIS | FMF(CRT) | FMF(CMP) | △ (MODIS) | △(CRT) | △(CMP) | |
---|---|---|---|---|---|---|---|
最大值 | 0.940 | 1.000 | 0.880 | 0.872 | 0.552 | 0.198 | 0.218 |
最小值 | 0.652 | 0.100 | 0.744 | 0.738 | 0.032 | 0.028 | 0.014 |
平均值 | 0.795 | 0.654 | 0.838 | 0.831 | 0.255 | 0.080 | 0.070 |
注:地基FMF表示来自AERONET和SONET的FMF结果;MODIS FMF表示来自MODIS的FMF结果;FMF(CRT)、FMF(CMP)分别表示控制实验和对比试验下的交叉验证结果;△(MODIS)表示地基FMF与MODIS FMF的差;△(CRT)和△(CMP)分别表示地基FMF与CRT、CMP的差 |
Fig. 4 The results in the control test and the comparison test图4 控制实验和对比试验结果 |
Tab.3 Comparison of mean PM2.5 mass concentration and standard deviation (St.D) from MODIS FMF, fusion FMF (CRT and CMP) with in-situ PM2.5表3 利用MODIS FMF和FMF融合结果估算的PM2.5与在位测量结果对比(μg/m3) |
PM in-situ | PM(MOD) | PM(CRT) | PM(CMP) | △PM(MOD) | △PM(CRT) | △PM(CMP) | |
---|---|---|---|---|---|---|---|
平均值 | 87.5 | 49.4 | 77.6 | 78.8 | 45.3 | 37.4 | 37.4 |
标准偏差 | 50.3 | 26.9 | 41.3 | 43.7 | 44.4 | 37.7 | 37.2 |
注: PM2.5 in-situ表示中国环境保护部的PM2.5在位测量结果;PM(MOD)表示利用MODIS FMF估算的近地面PM2.5质量浓度;PM(CRT)和PM(CMP)分别表示控制实验和对比试验的融合结果估算的近地面PM2.5质量浓度;△PM(MOD)表示PM2.5 in-situ与PM(MOD)的差;△PM(CRT)和△PM(CMP)分别表示PM2.5 in-situ与PM(CRT)、PM(CMP)的差 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
[
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
/
〈 |
|
〉 |