交通拥堵与预警信息交互传播动力学分析
作者简介:周艳(1976- ),女,陕西西安人,博士,副教授,主要从事地理信息系统应用和空间大数据分析。E-mail: zhouyan_gis@uestc.edu.cn
收稿日期: 2017-04-30
要求修回日期: 2017-05-12
网络出版日期: 2017-10-20
基金资助
国家重点研发计划项目(2016YFB0502300)
国家自然科学基金项目(41471332、41571392)
中央高校基本科研业务费专项资金资助(ZYGX2015J113)
Dynamic Analysis of Interactive Transmission of Warning Information and Traffic Congestion
Received date: 2017-04-30
Request revised date: 2017-05-12
Online published: 2017-10-20
Copyright
城市交通拥堵问题已经成为当今世界许多城市发展过程中面临的一个严峻问题。针对这一问题,全空间信息系统通过对复杂、动态的交通拥堵过程进行多粒度抽象、多尺度建模和多层次综合分析,为解决城市交通拥堵提供了新的途径。当城市交通发生严重堵塞时,通常伴随着“道路拥堵”预警信息传播,用以影响人类的出行活动,从而在一定程度上影响交通拥堵传播。为了深入分析城市交通网络拥堵的动态演进过程,本文建立了交通拥堵传播的改进易感-感染-易感(susceptible-in fected-susceptible,SIS)的病毒传播模型,利用状态转移概率方法,基于多层复杂网络分析交通拥堵和预警信息交互传播的动力学行为特征,揭示预警信息传播对交通拥堵传播的影响。该方法不仅能够描述基于交通流传播特点的拥堵传播过程,而且能够描述交通网络中的预警信息传播过程。数字仿真实验表明,交通拥堵的传播过程与交通网络中的预警信息传播动力学之间存在关联关系。
周艳 , 李妍羲 , 江荣贵 , 耿二辉 . 交通拥堵与预警信息交互传播动力学分析[J]. 地球信息科学学报, 2017 , 19(10) : 1279 -1286 . DOI: 10.3724/SP.J.1047.2017.01279
The problem of urban traffic congestion has become a serious problem in the development of many cities in the world. To solve this problem, pan-spatial information system provides a new way of solving urban traffic congestion by multi-granularity abstracting, multi-scale modeling and multi-level comprehensive analysis of dynamic and complex traffic jam processes. In reality, the process of traffic congestion is usually accompanied by the dissemination of traffic warning information. Accordingly, when the competition occurs, which is generated by traffic congestion and the spreading of warning information in different network layers, the interplay between traffic congestion and warning information plays an important role. Thus, in order to study the interplay between information spreading and traffic congestion spreading, we constructed a multiplex network with road intersections or sites to analyze the interplay between information spreading and traffic congestion spreading. Firstly, we considered the effect of the surrounding nodes and proposed an improved SIS model. Then, based on the improved SIS model, we used the method of state transition probability to study the competing spreading processes of multiplex network. Finally, using the Monte Carlo method, we analyzed and simulated the traffic congestion threshold in both homogeneous network and heterogeneous network. This study indicates that the process of traffic congestion depends on dynamics of warning information spreading through transport network.
Fig. 1 Transition probability diagram for the nodes𠈙 states in the two-layer SIS-NWN networks图1 多层网络中交通拥堵-预警信息模型的节点状态转化示意图 |
Tab. 1 The main notations and descriptions表1 主要的符号及描述 |
符号 | 描述 |
---|---|
λ | 节点由正常状态(N)转化为预警状态(W)的概率 |
μ | 节点由预警状态(W)转化为正常状态(N)的概率 |
βN | 处于正常状态(N)的节点发生交通拥堵的概率 |
βW | 处于预警状态(W)的节点发生交通拥堵的概率 |
δN | 处于正常状态(N)的节点发生拥堵后,拥堵消散的概率 |
δW | 处于预警状态(W)的节点发生拥堵后,拥堵消散的概率 |
Fig. 2 The size of infected nodes pI is shown as a function of infectivity β of three kinds of traffic congestion models in Watts-Strogatz model and Barabasi-Albert model, respectively图2 在无标度网络和小世界网络中3种交通拥堵模型的pI随β的变化图 |
Fig. 3 The size of infected nodes pI is shown as a function of infectivity δ of three kinds of traffic congestion models in Watts-Strogatz model and Barabasi-Albert model, respectively图3 在无标度网络和小世界网络中3种交通拥堵模型的pI随δ的变化图 |
Fig. 4 Monte Carlo simulations of the two-layer SIS-NWN networks in Watts-Strogatz model and Barabasi-Albert model.The size of infected nodes pI is shown as a function of infectivity δW图4 在无标度网络和小世界网络中不同δW值下的交通拥堵-预警信息交互模型 |
Fig. 5 The relationship between pI, pW and β under differentvalues in Watts-Strogatz model and Barabasi-Albert model图5 在无标度网络和小世界网络中不同λ值下的pI、pW与β之间的关系 |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
[
|
[3] |
|
[4] |
|
[5] |
[
|
[6] |
|
[7] |
|
[8] |
[
|
[9] |
[
|
[10] |
|
[11] |
[
|
[12] |
|
[13] |
[
|
[14] |
[
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
[
|
[20] |
|
[21] |
|
[22] |
[
|
/
〈 | 〉 |