中国县域农村贫困的空间模拟分析
作者简介:冯娅娅(1991-),女,甘肃天水人,硕士生,主要从事生态环境遥感研究。E-mail:fengyaya_1102@163.com
收稿日期: 2017-07-29
要求修回日期: 2017-12-13
网络出版日期: 2018-03-20
基金资助
国家自然科学基金项目(41661025)
甘肃省高等学校科研项目(2016A-001)
西北师范大学青年教师科研能力提升计划(NWNU-LKQN-16-7)
Analysis on Spatial Simulation of Rural Poverty at County Level in China
Received date: 2017-07-29
Request revised date: 2017-12-13
Online published: 2018-03-20
Supported by
National Natural Science Foundation of China, No.41661025
Project of Educational Commission of Gansu Province of China, No.2016A-001
Research Ability Promotion Project for Young Teachers of Northwest Normal University, No.NWNU-LKQN-16-7.
Copyright
以中国县级行政区划为研究单元,从自然和社会经济因素中选取贫困的影响因子,建立评价指标体系,利用GIS空间分析和 BP人工神经网络,模拟各县域的自然致贫指数和社会经济消贫指数,并在分析贫困内在形成原因的基础上,明晰了空间贫困的分布特征。结果显示:自然因素是现阶段中国县域主要的致贫原因,全国县域自然致贫指数的分布呈现出明显随纬度和经度地带性分布的规律,自北而南、自西而东逐次呈带状排列分布。社会经济因素对贫困起到一定的缓解作用,全国县域社会经济消贫指数的空间分布较为破碎,各省区内部县域社会经济消贫指数的变异系数均大大高于自然致贫指数的变异系数。全国贫困压力指数以“黑河-百色”一线为界,东中西差异显著,呈现“大分散、小聚集”的空间分布格局。本文识别的贫困县与国家确定的重点扶贫县在空间上具有较高的重合性。
冯娅娅 , 潘竟虎 , 杨亮洁 . 中国县域农村贫困的空间模拟分析[J]. 地球信息科学学报, 2018 , 20(3) : 321 -331 . DOI: 10.12082/dqxxkx.2018.170352
Poverty is a common problem during the development of human society, and is also one of grand challenge to achieve sustainable development for the developing countries. Rural poverty is a major problem in the process of building a well-off society in a all-around way in China. Thus, the identification and the measurement of poverty are premise and basis of the policies of poverty eradication and poverty alleviation under implementing the new regional development. From a geographical view of county scale, we select the major influencing factors of poverty from common natural and social factors to build an evaluation index system based on spatial poverty and its related theory. First, we use Pearson correlation analysis to differentiate the poverty leading factors and poverty elimination factors. Then, we use GIS and BP Neural Network to simulate Natural Impoverishing Index (NII) and Social Economic Poverty Alleviation Index (SEPAI). We compute Poverty Pressure Index (PPI) combining natural impoverishing index and social economic poverty alleviation index, and explore the spatial distribution characteristics of poverty, revealing spatial pattern of poverty and its differentiation mechanism. We put scientific and reliable theoretical foundation to poverty alleviation and development of rural regions in China. The results show that the natural factors, such as NPP, slope, elevation, terrain, are the major impoverishing index for the study area. The social economic factors, such as the public revenue, household saving, fixed assets, are the main factors to alleviate and eliminate poverty. From the view of spatial distribution, the higher NII were mainly distributed in the west and north of China, especially in Tibet plateau and the northwest of Xinjiang, but the lower NII counties were located in the east and south with the characteristics of zonal distribution of latitude and longitude. SEPAI is positively correlated with the local economic development level in the spatial distribution. The coefficient of variation of SEPAI in provinces are significantly higher than that of NII. The poverty distribution pattern of PPI show a tendency of "large dispersion, small aggregation" by dividing Heihe: Baise Line. The characteristics of PPI represents a globally strong spatial dependence with a Moran's I coefficient of 0.33. The poverty-stricken counties identified in this paper have a high coincidence with the national key poverty alleviation counties.
Key words: rural poverty; spatial simulation; BP Neural Network; GIS; China
Tab. 1 Appraisement index system of rural spatial poverty表1 农村空间贫困测度指标体系 |
一级指标 | 二级指标 | 单位 | 数据类型 |
---|---|---|---|
自然环境 | 净初级生产力(NPP)X1 | gc/m2 | 遥感数据 |
集水指数X2 | - | 观测数据 | |
地形破碎度X3 | m | 空间栅格 | |
平均高程X4 | m | 空间栅格 | |
平均坡度X5 | - | 空间栅格 | |
植被湿度指数(GVMI)X6 | - | 遥感数据 | |
社会经济 | 人均公共财政收入X7 | 元/人 | 统计数据 |
人均居民储蓄余额X8 | 元/人 | 统计数据 | |
农民人均纯收入X9 | 元/人 | 统计数据 | |
文盲率X10 | % | 统计数据 | |
每万人卫生机构床位数X11 | 床 | 统计数据 | |
平均夜间灯光X12 | - | 遥感数据 |
Fig. 1 Spatial distribution of some rasterization index图1 部分栅格化指标的空间分布图 |
Tab. 2 Results of correlation analysis表2 相关性分析结果 |
X1 | X2 | X3 | X4 | X5 | X6 | |
---|---|---|---|---|---|---|
相关性系数 | -0.186 | 0.050 | -0.155 | -0.176 | -0.279 | -0.145 |
显著性水平 | 0.004 | 0.243 | 0.015 | 0.006 | 0.000 | 0.021 |
X7 | X8 | X9 | X10 | X11 | X12 | |
相关性系数 | 0.890 | 0.727 | 0.764 | 0.020 | 0.501 | 0.421 |
显著性水平 | 0.000 | 0.000 | 0.000 | 0.388 | 0.000 | 0.000 |
Tab. 3 Evaluation standard of natural impoverishing index表3 自然致贫指数评价等级 |
NPP | 集水指数 | 地形破碎度 | 高程 | 平均坡度 | GVMI | 等级 |
---|---|---|---|---|---|---|
1 | 1 | 0.0656 | 0.0520 | 0.0792 | 1 | 1(低) |
0.5530 | 0.5609 | 0.1564 | 0.1500 | 0.1860 | 0.7457 | 2(较低) |
0.4005 | 0.3681 | 0.2887 | 0.2992 | 0.3194 | 0.5780 | 3(中) |
0.2785 | 0.2441 | 0.5460 | 0.5632 | 0.5308 | 0.4508 | 4(较高) |
0.1579 | 0.1423 | 1 | 1 | 1 | 0.2937 | 5(高) |
Fig. 2 Spatial distribution of natural impoverishing index图2 自然致贫指数(NII)空间分布图 |
Tab. 4 Poverty indices of 14 contiguous specially poor areas of China表4 14个国家连片特困区的贫困指数 |
贫困指数 | 六盘 山区 | 秦巴 山区 | 武陵 山区 | 乌蒙 山区 | 滇桂黔 石漠化区 | 滇西边 境山区 | 大兴安岭 南麓山区 | 燕山太 行山区 | 吕梁 山区 | 大别 山区 | 罗霄 山区 | 四省 藏区 | 南疆 三地州 | 西藏 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NII | 2.82 | 2.72 | 2.29 | 2.33 | 2.10 | 1.99 | 2.99 | 2.91 | 2.84 | 2.39 | 2.29 | 3.61 | 3.66 | 4.34 |
SEPAI | 0.82 | 1.06 | 0.94 | 0.60 | 0.67 | 0.86 | 0.79 | 1.02 | 0.94 | 0.68 | 0.87 | 0.92 | 0.99 | - |
PPI | 2.64 | 2.68 | 2.26 | 2.95 | 2.26 | 2.82 | 2.09 | 2.44 | 2.33 | 1.95 | 2.01 | 3.15 | 3.00 | - |
Tab. 5 Evaluation standards of socio-economic poverty alleviation index表5 社会经济消贫指数评价等级 |
人均公共财政收入 | 人均居民储蓄额 | 农民人均纯收入 | 文盲率 | 每万人卫生机构床位数 | 平均夜间灯光强度 | 等级 |
---|---|---|---|---|---|---|
0.0364 | 0.0531 | 0.0453 | 0.1834 | 0.0845 | 0.0254 | 1(低) |
0.0951 | 0.1118 | 0.0964 | 0.2473 | 0.1443 | 0.0873 | 2(较低) |
0.1925 | 0.2094 | 0.2021 | 0.3262 | 0.2358 | 0.1986 | 3(中) |
0.5077 | 0.3902 | 0.4310 | 0.5363 | 0.4052 | 0.4509 | 4(较高) |
1 | 1 | 1 | 1 | 1 | 1 | 5(高) |
Fig. 3 Spatial distribution of socio-economic poverty alleviation index图3 社会经济消贫指数(SEPAI)空间分布图 |
Fig. 4 Spatial distribution of poverty pressure index图4 贫困压力指数(PPI)空间分布图 |
Fig. 5 The local spatial autocorrelation pattern of poverty pressure index in China图5 县区贫困压力指数的局部空间自相关分布 |
Fig. 6 Comparison between identified in this study and state-supported impoverished counties图6 本文识别的贫困县与国家扶贫开发重点县对比 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
[
|
[3] |
[
|
[4] |
[
|
[5] |
[
|
[6] |
[
|
[7] |
[
|
[8] |
[
|
[9] |
|
[10] |
[
|
[11] |
[
|
[12] |
[
|
[13] |
[
|
[14] |
|
[15] |
[
|
[16] |
[
|
[17] |
[
|
[18] |
|
[19] |
|
[20] |
|
[21] |
国家统计局农村社会经济调查司.中国县域统计年鉴[M].北京:中国统计出版社, 2015.
[Department of Rural Survey of National Bureau of Statistics. China Statistical Yearbook(County-Level)[M]. Beijing: China Statistics Press, 2015.]
|
[22] |
[
|
[23] |
|
[24] |
[
|
[25] |
[
|
[26] |
[
|
/
〈 | 〉 |