机载LiDAR点云数据的二面角滤波算法
作者简介:刘凯斯(1989-),女,博士生,研究方向为基于LiDAR点云数据的三维空间建模与分析。E-mail: 994761911@qq.com
收稿日期: 2017-10-17
要求修回日期: 2018-02-28
网络出版日期: 2018-04-20
基金资助
国家自然科学基金面上项目(41671417)
北京市教委科技计划一般项目(KM201610028013)
Dihedral Angle Filtering Algorithm for Airborne LiDAR Point Cloud Data
Received date: 2017-10-17
Request revised date: 2018-02-28
Online published: 2018-04-20
Supported by
National Natural Science Foundation of China, No.41671417
General Project of Science and Technology Plan of Beijing Municipal Education Committee, No.KM201610028013.
Copyright
机载LiDAR是获取地表DEM的重要技术之一。本文针对机载LiDAR点云数据在复杂城区环境下的大型建筑及低矮地物滤波问题,提出一种新的二面角滤波法。利用空间二面角的平面角可以表达空间两相交平面相对位置的原理,实现机载LiDAR点云数据滤波。首先,算法提取点云数据中的高程突变点,以非突变点的二面角余弦均值稳定性作为判定迭代结束的条件;其次,分别统计高程突变和非突变点集的二面角余弦值频率分布,以交点处对应余弦值和最后一次迭代的坡度值作为LiDAR点云滤波的判定条件;最后,利用数学形态学“开”算子,去除残留低矮植被,得到可靠的滤波结果。对同一区域机载LiDAR点云数据,通过“二面角法”与“渐进三角网法”进行滤波处理。实验结果表明,二面角滤波法能有效地降低地物点错分为地面点的百分率,且在去除地物信息的同时能良好地保留地形特征。
刘凯斯 , 王彦兵 , 宫辉力 , 李小娟 , 余洁 . 机载LiDAR点云数据的二面角滤波算法[J]. 地球信息科学学报, 2018 , 20(4) : 414 -421 . DOI: 10.12082/dqxxkx.2018.170489
Airborne LiDAR is one kind of the technologies for obtaining ground surface DEM. On the analysis of the airborne LiDAR point cloud filtering algorithms, this paper proposes a new filtering algorithm-dihedral filtering. The algorithm is based on the theory that can express the relative position of two intersect planes in space, to achieve the airborne LiDAR point cloud data filtering process. Firstly, the elevation-mutate points are extracted from point cloud data. The iteration ends when the stability of the cosine of non-mutated points′ dihedral angle reaches required level. Then, the frequency distributions of the cosine of both mutated and non-mutated points′ dihedral angle are counted, and draws a line chart. Ground points and non-ground points are classified based on the intersection′s cosine of line chart and slope value of the last iteration. Finally, the open operator of the mathematical morphology is used to remove low vegetation, and the reliable results are obtained. Comparing with ′Progressive TIN Method′, the misjudged percentage of the non-ground points were effectively reduced. Dihedral method can retain topographical information while filtering terrestrial object information.
Key words: airborne LiDAR; dihedral angle filtering; slope; open operator; DEM
Fig. 1 Dihedral angle图1 二面角 |
Fig. 2 Schematic view of surface elevation change图2 地表高程变化示意图 |
Fig. 3 Flowchart of airborne LiDAR point cloud filtering based on dihedral angel图3 二面角法点云滤波流程图 |
Tab. 1 The cosine of dihedral angle表1 二面角余弦值 |
迭代次数/次 | |||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
斜率阈值 | 3.3 | 2.5 | 2 | 1.6 | 1.3 |
二面角余弦均值 | 0.909 | 0.917 | 0.925 | 0.929 | 0.932 |
Fig. 4 Distribution range of dihedral angle cosine for buildings and grounds图4 建筑物和地面的二面角余弦分布范围 |
Fig. 5 Frequency statistics of dihedral angle cosine for elevation mutation and non-mutation points图5 高程突变和非突变点二面角余弦值频率统计 |
Fig. 6 Dihedral angle filtering图6 二面角滤波 |
Fig. 7 Filtering results图7 LiDAR点云滤波效果图 |
Tab. 2 Accuracy assessment for filtering algorithm表2 滤波精度评价表 |
滤波结果误差统计 | 实验区1 | 实验区2 | |||
---|---|---|---|---|---|
二面角滤波法 | 渐进三角网法 | 二面角滤波法 | 渐进三角网法 | ||
a | 678 | 3518 | 1583 | 7961 | |
b | 28 171 | 144 296 | 63 298 | 324 108 | |
c | 760 | 4824 | 1686 | 10 840 | |
d | 25 761 | 131 075 | 58916 | 294 547 | |
Type I Error/% | 2.35 | 2.38 | 2.43 | 2.4 | |
Type II Error/% | 2.87 | 3.55 | 2.78 | 3.55 | |
Total Error/% | 2.60 | 2.94 | 2.61 | 2.95 |
Fig. 8 Distribution of error points图8 误差点分布图 |
Fig. 9 Comparison of two kinds of filtering methods: Dihedral and TIN filters图9 二面角滤波和渐进三角网滤波方法对比分析 |
Fig. 10 Top view and sectional view of the area for experiment 2图10 数据2的局部俯视图、剖面图 |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
|
[3] |
|
[4] |
[
|
[5] |
[
|
[6] |
[
|
[7] |
[
|
[8] |
|
[9] |
|
[10] |
[
|
[11] |
|
[12] |
[
|
[13] |
|
[14] |
[
|
[15] |
[
|
[16] |
[
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
[
|
[22] |
[
|
/
〈 | 〉 |