全国激光雷达大会特约稿件

多源数据古塔变形监测研究

  • 王国利 , 1, 2 ,
  • 吴桂凯 1 ,
  • 王晏民 1, 2 ,
  • 郭明 , 1, 2, * ,
  • 赵江洪 1, 2 ,
  • 高超 1
展开
  • 1. 北京建筑大学,测绘与城市空间信息学院, 北京 102616
  • 2. 古建筑健康与精细三维重构北京市重点实验室,北京 102616
*通讯作者:郭 明(1981-),男,副教授,主要从事遗产保护数字化、低空摄影测量、移动道路测量等领域研究。E-mail:

作者简介:王国利(1983-),男,讲师,主要从事地面激光雷达数据处理与文化遗产保护数字化理论与方法研究。E-mail:

收稿日期: 2017-09-22

  要求修回日期: 2018-01-25

  网络出版日期: 2018-04-20

基金资助

国家自然科学基金项目(41601409)

北京市自然科学基金项目(8172016)

北京市教育委员会科技发展计划项目面上项目(KM201510016016、KM201810016013)

北京建筑大学科学研究基金特别委托项目(KYJJ2017024)

Deformation Monitoring of Ancient Pagoda with Multi-source Data

  • WANG Guoli , 1, 2 ,
  • WU Guikai 1 ,
  • WANG Yanmin 1, 2 ,
  • GUO Ming , 1, 2, * ,
  • ZHAO Jianghong 1, 2 ,
  • GAO Chao 1
Expand
  • 1. School of Geomatics and Urban Information, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
  • 2. Beijing Key Laboratory for Architectural Heritage Fine Reconstruction & Health Monitoring, Beijing 102616, China;
*Corresponding author: GUO Ming, E-mail:

Received date: 2017-09-22

  Request revised date: 2018-01-25

  Online published: 2018-04-20

Supported by

National Natural Science Foundation of China, No.41601409

National Natural Science Foundation of Beijing, No.8172016

The Development Project of Beijing Municipal Science and Technology, No.KM201510016016, KM201810016013

Special Entrustment Project of Scientific Research Fund of Beijing University of Civil Engneering and Architecture, No.KYJJ2017024.

Copyright

《地球信息科学学报》编辑部 所有

摘要

建筑遗产的变形监测是遗产可持续保护的重要保障,塔类古建筑是古建筑中的典型,造型突兀高耸,变形包含沉降、倾斜、弯曲及扭转等多种状态,传统监测手段难以满足其监测需求。本文针对某古塔的变形问题,以传统测量方法为参照,采用地面激光雷达和无人机近景摄影测量技术获取古塔三维数据,结合古塔监测指标对3种方法流程、特点、数据及结果精度进行对比,通过融合三维模型对古塔病害分析,从不同的角度反映出古塔的变形状况。通过对比可知:常规测量方法进行古塔变形监测,具有精度高,应用灵活特点,适用于古建筑整体姿态或者典型特征监测;地面激光雷达技术精度高、设站灵活,能够精确分析古塔整体及部分局部的形变,但易受扫描视角的影响;无人机近景摄影测量技术建立的古塔三维模型具有高精度及真实的色彩,对整体及细节纹理表现好,但是无法获取塔内部狭窄空间的三维数据;融合数据能有效弥补单一数据源的缺陷,实现古塔全面病害分析。数据精度方面,地面激光扫描及近景摄影测量技术均可达到毫米级精度,传统监测方法在沉降与倾斜监测方面优于前2种方法,在监测全面性方面则前2种方法更具优势。

本文引用格式

王国利 , 吴桂凯 , 王晏民 , 郭明 , 赵江洪 , 高超 . 多源数据古塔变形监测研究[J]. 地球信息科学学报, 2018 , 20(4) : 496 -504 . DOI: 10.12082/dqxxkx.2018.170446

Abstract

Deformation monitoring of architectural heritage plays an important role in Sustainable Heritage Protection. Ancient pagoda is one of the typical categories of architectural heritage with complex structure, high height and various models. The deformation of pagoda includes subsidence, tilting, bending and twisting etc, and it is difficult for conventional deformation monitoring methods to meet the monitoring requirement. Terrestrial LiDAR and UAV photogrammetry technology become more and more popular in 3D data acquisition of cultural heritage with fast speed, high accuracy and non-contact capabilities. However, most of the LiDAR and UAV data are used for detail surveying and documentation. In this paper terrestrial LiDAR and UAV photogrammetry technology were selected to obtain the 3D data of ancient pagoda for deformation studies. A comprehensive comparison and analysis is made for mornitoring process, characteristics and the accuracy of three methods and complete analysis on fusion model with UAV photogrammetry and LiDAR data is made according to the monitoring index of pagoda. The main conclusions are as follow: The conventional deformation methods is flexible and have more advantages in precision, and is more suitable for monitoring of the overall attitude of ancient buildings and their typical characteristics. Terrestrial LiDAR technology has advantages in overall and local deformation of pagoda, but it′s also susceptible to scanning angle. The 3D model of pagoda built by UAV close range photogrammetry technology has high precision and real color, and performs well on the whole and detail textures, however it′s hard for the technique to acquire the 3D data of narrow space inside ancient pagoda. Fusion data model can effectively make up the defects of the single data source and realize a comprehensive deformation analysis for ancient pagoda. For accuracy of the results, terrestrial laser scanning and photogrammetric techniques can reach millimeter accuracy and is better in the comprehensive monitoring. The traditional monitoring method is superior in settlement and tilt monitoring to the first two methods.

1 引言

古建筑是先人们留给我们的宝贵财富,然而,随着历史的变迁,自然环境的变化以及人为因素等影响,一些古建筑受到不同程度的损害。另外,建筑遗产有其各自的特征、尺度及结构,需要采用精细的测量手段记录其档案信息[1]。在古建筑遗产中,塔类古建筑是具有代表性的一类,国内有许多著名古塔(如应县木塔、虎丘塔等)都成为国家重点文物且经过多次修缮,然而塔类古建筑有倾斜、弯曲及扭转等多种变形[2],传统形变监测难以满足其全部形变特征测量[3],需要获取其三维数据来分析其详细变形。
三维激光扫描与摄影测量技术均可以高精度获取古建筑精细三维信息[4,5,6,7]。目前有很多采用这些数据源分析目标变形的案例:Toshikazu等[8]与Minowa等[9]利用CCD影像系统测试地震、台风等自然灾害对京都常寂光寺木质塔的结构影响;Massimo等[6]提出用数字摄影测量结合逆向建模方法对比分析古船变形,然而古塔结构复杂不适合构建正向模型;周伟等[10]对颐和园佛香阁进行三维扫描并通过剖面关键点拟合椭圆分析塔的轴线变形;孙强[11]、Duan等[12]利用数学模型对古塔的倾斜、弯曲及扭曲变形进行拟合并分析预测其形变;陆建华等[3]以虎丘塔为例,采用地面激光扫描扫描,在塔身上布设监测球标进行变形分析,需要在塔上标记;Jo等[13]用倾斜仪监测麻古寺石塔的姿态并对其稳定性进行判断,该方法只能监测石塔单一病害特征;黄强[14]总结了上海13座现存古塔的监测现状,主要采用传统测量及激光扫描法。国内外还有很多学者利用地面激光扫描与低空摄影测量方法对古塔或者其他目标进行详细测绘及建模[15,16,17,18],多技术集成及其研究逐渐成为一种趋势。不同监测手段对于塔类古建筑的变形分析的对象、精度及流程都存在较大差异,对古塔进行变形监测具体采用哪种手段更经济合适需要综合分析。
由于塔身高度及环境对观测视角的限制,采用地面三维激光扫描往往存在许多漏洞,而采用摄影测量法对模型表面精度缺乏定量分析,本文针对某古塔的变形,运用传统测量、三维激光扫描及无人机近景摄影测量3种技术手段对塔的变形进行监测,通过对3种不同源数据进行对比分析,相互检核,对3种方法特点及数据精度进行评定。

2 监测方案与数据获取

2.1 古塔概况

本文研究古塔为平面六边形楼阁式砖塔(图1(a))。古塔监测指标主要包括,古塔的倾斜变化、沉降变化以及扭转变化,其中倾斜采用垂直定向的监测及竖向边界监测2项指标(图1(a)、(b))。其倾斜方向主要分析沿XY方向的倾斜角度,根据工程要求其沉降监测精度要求在亚毫米级,倾斜及表面结构监测精度达到毫米级。
Fig. 1 Deformation monitoring of ancient pagoda

图1 古塔变形监测

根据古塔的形状以及周围的环境状况,布设导线控制网和高程控制网。导线依据《工程测量规范》(GB50026-2007)选用三等导线布设,监测网有布设3个永久点(K1-K3),6个导线点,以K3-K2为参考边构成闭合导线(图2),由于现场条件限制,导线边长无法满足,只能满足角度(单测回方向标准0.5″)和边长精度(≤1 mm+1 ppm)的要求。以K3为工作基点,在塔周边布设6个水准监测点(S1-S6),布设闭合水准路线,按照二等水准精度观测,测站高差中误差±0.5 mm。在进行监测之前首先要根据导线控制网对2个工作点(D3,D5)进行坐标检核,以保证工作点的稳定性。
Fig. 2 Layout of transverse control network and monitoring points

图2 导线控制网与水准监测点布设

利用徕卡TS30全站仪对古塔2个相互垂直的方向进行倾斜控制观测,该仪器测角精度为0.5″,测距精度为0.6 mm+1 ppm。通过对塔身上的反射片进行位移监测,同时作为摄影测量模型定向的控制点(选不同层面分布的5个点),反射片实物如图3所示。反射片分布在不同古塔从高到低的多个层次,观测采用测回观测法,点位精度优于0.5 mm。
Fig. 3 Distribution of reflectors

图3 反射片分布示意图

利用扫描仪获取古塔三维空间数据,建立三维模型,进而分析其倾斜变化和扭转变化。Faro Focus3D X130主要技术指标如表1所示。
Tab.1 Parameters of Faro Focus3D X130

表1 Faro Focus3D X130扫描仪及主要技术指标

配置 Faro Focus3D X130
测程/m 0.5 ~130
距离精度指标 0.6 mm/10 m
扫描视角 360°×120°
扫描分辨率 0.1mm/50m
数据获取速率 120万点/s
利用无人机航拍近景摄影测量技术获取古塔的影像数据,建立彩色模型,然后分析其倾斜和扭转变化。如表2所示,无人机摄影测量装置,AscTec Falcon 8无人机搭载双鱼座倾斜摄影云台,索尼ILCE-6000相机单镜头像素2430万,双镜头摇摆倾斜摄影。该装置通过移动地面控制系统(MGS)可以实时的控制系统设备,如相机快门调整、曝光调整以及视频变焦等,整个系统能够从不同角度获取目标影像。
Tab. 2 Parameters of AscTec Falcon 8

表2 AscTec Falcon 8无人机及参数

飞行器类型 V字形飞行器
机身自重/g 940
任务荷载/g ≤1200
机身尺寸/mm 770×820×125
最大巡航速度/(m/s) 15

2.2 地面激光扫描方法数据获取

在扫描测量之前首先根据古塔周围的环境状况确定扫描站点,要求所设站点能够全面获取古塔的三维数据且没有多余站点,而且每两站之间至少有3个以上的配准标靶球,以便数据配准。扫描站点分布,站点到古塔距离范围是10~50 m。根据古塔监测要求,采用Faro扫描仪分辨率7 mm/10 m,具体扫描站点分布如图4(a)所示,塔内部空间狭窄,只能采用激光扫描方式获取。其中内部点云数据通过上下层楼梯接口设置控制球及重叠点云连接,内外点云则通过塔身各层窗口设置特制球形标志来连接,如图4(b)、(c)所示。图4(d)-(f)显示古塔单站扫描点云数据及拼接后的外部及内部点云数据,点云拼接及控制点坐标转换几何误差控制在±3 mm以内。
Fig. 4 Data collection of ancient pagoda

图4 古塔现场数据采集

2.3 无人机近景摄影测量数据获取

在进行航拍之前需要对古塔周围的环境进行实地勘察,为起降场地的选取、航线规划以及应急预案制定等工作提供资料[19]。在古塔变形监测中通过设置地面基准站,设置无人机飞行速度4 m/s,影像分辨率是6000像元×4000像元,曝光时间 1/800 s。对于古塔单体建筑采用上下飞行模式获取影像数据。如图5所示,相邻2张影像图片重叠度达到65%以上,共采集照片659张。
Fig. 5 Overlap region of adjacent images

图5 相邻两张影像重叠区域示意图

3 古塔变形分析

本文利用多源数据对古塔变形进行分析,一方面可以利用多源数据对古塔各监测指标相互印证,另一方面通过融合三维数据获得完整的融合模型,实现完整的变形分析。

3.1 多源数据融合

多源数据融合中,数据融合几何的精度非常重要,其核心是要通过控制将多源数据拼接并转换到监测坐标系中。本文采用特制标靶(图4(b)),经过TS30观测控制坐标,数据拼接约束误差(主要为同名点误差)保持在3 mm以内。
无人机航拍近景摄影测量技术获取古塔影像数据,可利用专业软件PhotoScan对影像照片进行解算以完成三维彩色建模。PhotoScan软件无需设置初始值,无需相机检校和控制点数据,依据计算机多目视觉影像三维重建技术,对具有影像重叠的照片进行处理,生成三维模型[20]。摄影测量数据经过photoscan生成的三维模型,通过5对控制点(S1-S5)进行绝对定向,取塔身均匀分布的5个标靶点(T1-T5)作为检测点(图3),具体情况如表3所示。
Tab.3 Comparison for targets of TS30 and photogrammetry

表3 TS30与摄影测量模型标靶点对比

层数 控制点 水平坐标 全站仪数据/m 近景摄影测量数据/m 误差/mm 测试点 水平
坐标
全站仪数据/m 近景摄影测量数据/m 误差/mm
第2层 S1 X 525.3303 525.3332 2.9 T1 X 525.7066 525.7093 -2.7
Y 391.5596 391.5578 -1.8 Y 391.7824 391.7813 1.1
第3层 S2 X 525.7796 525.778 -1.6 T2 X 524.5897 524.5889 0.8
Y 391.6463 391.6451 -1.2 Y 387.5715 387.5693 2.2
第6层 S3 X 527.7860 527.7874 1.4 T3 X 523.9101 523.9099 0.2
Y 390.2925 390.2936 1.1 Y 389.8885 389.8865 2.0
第9层 S4 X 527.5651 527.5679 2.8 T4 X 524.2115 524.2136 -2.1
Y 389.8459 389.8447 -1.2 Y 389.5765 389.5772 -0.7
第10层 S5 X 525.3883 525.3861 -2.2 T5 X 524.4872 524.4853 1.9
Y 390.0110 390.0132 2.2 Y 387.5796 387.5790 0.6
由上表分析可知,无人机航拍近景摄影测量技术获取的古塔反射片水平坐标与全站仪监测得到的坐标相比,误差都在3 mm之内。在不考虑其它因素的影响下,近景摄影测量获取三维模型数据精度在毫米级,为进一步对比其整体数据情况,将其模型与地面激光点云生成模型进行比对。在Geomagic Qualify中进行三维对比分析,得到结果如图6所示。
Fig.6 Comparison and analysis of 3D model by photogrammetry and LiDAR

图6 摄影测量与激光点云三维模型及其对比分析

图6可知,2种方法建立的古塔模型整体匹配较好,尤其是塔身表面精度,与实测标靶点吻合;然而孔洞部分(表面佛龛及窗口内),由于无人机拍摄视角限制误差较大。图7显示2类模型部分细节对比:激光雷达数据在可见边界上仍具有较高的模型精度(图7(b)),然而俯视角度的数据则误差较大(图7(d));在有孔洞的部分摄影测量模型误差较大,在表面纹理细节上摄影测量具备较大优势(图7(e)),方便破损分析。
Fig. 7 Comparison of photogrammetry model and LiDAR model

图7 摄影测量(图a,c,e)与激光雷达模型(图b,d,f)对比

将激光点云与摄影测量模型数据以激光点云模型为基础,按照“最小点间距法”融合,设定距离阈值为5.0 mm,得到融合点云数据如图8所示。 2种数据的融合,实现了三维数据的劣势互补:一方面能够尽可能提高局部及整体的几何精度,方便对塔的结构进行精细三维分析;另一方面又能够通过纹理分析其局部细节,同时弥补了单一技术视角不足的问题,能够满足全面三维测量需求。
Fig. 8 Data fusion of photogrammetry model and

LiDAR model

图8 摄影测量与激光雷达点云融合

3.2 结构分析

古塔结构分析主要包含整体倾斜分析及结构图制作。倾斜分析可以通过全站仪或者融合三维模型直接测量得到,而结构图则只能通过融合三维模型来完成。
通过全站仪对古塔高层边缘(第9层)和底层边缘(第2层)的监测,得到两层边缘方位角,根据古塔的对称性,由式(1),得到古塔两层中心点方位角。设古塔其中一层左侧边缘方位角是α1,右侧边缘方位角是α2,则该层中心点方位角:
α 0 = α 1 + α 2 - α 1 / 2 (1)
由2个监测层的中心点方位角得到各自的中心点,在AutoCAD软件中连接得到倾斜方向线并和Z方向进行对比,通过角度量测得到其倾斜角度,从而确定古塔倾斜状态如图9(b)所示。
Fig. 9 Tilt analysis of ancient pagoda

图9 古塔倾斜分析示意图

同样对三维模型沿X,Y方向进行竖向剖切(图9(a)),利用AutoCAD软件对剖切边线进行拟合,连接塔尖和底层中心得到古塔中心线,然后和Z方向进行对比得到古塔的倾斜角度如图9(b)所示。对2类数据5期观测值对比,如表4所示。
Tab. 4 Tilt angle of Pagoda in Direction X&Y

表4 古塔X&Y方向倾斜角度(°)

监测周期 1 2 3 4 5
全站仪X 0.8572 0.8594 0.8577 0.858 0.8589
扫描仪X 0.8561 0.8583 0.8568 0.8572 0.8592
全站仪Y 2.6886 2.6872 2.6890 2.6873 2.6895
扫描仪T 2.6899 2.6875 2.6892 2.6867 2.6888
由式(2)计算2种观测方法在古塔X方向倾斜角度中误差分别是3.226″和4.434″,Y方向倾斜角度中误差分别是3.701″和4.676″。
m = ± [ vv ] n - 1 (2)
式中:v为最或是值与观测值之差;n为观测次数。由于三维数据包含了控制、拼接及其它人为操作的误差对倾斜分析结果产生影响,全站仪直接观测的倾斜角度数据精度高于扫描仪获取的倾斜角度数据精度。全站仪数据是激光扫描与摄影测量的控制基础,二者观测姿态数据可以相互验证,提高全站仪观测条件还可更进一步获取到更精确的结果。
古塔结构剖面要反映塔内外部及各层之间的结构关系,需要完整的三维数据,在融合的点云模型基础上,以Y方向为例沿塔尖中心竖直剖切结果(图10(a))完整地反映了古塔内外部结构关系,剖切点云通过手工修饰及补充可构成完整的剖面图。由于融合模型误差,剖面图细部存在部分“错误”:摄影测量模型数据剖切将塔体窗口“封住”(图10(b));由于激光点云误差(边界),顶部佛龛窗口数据误差较大,内部轮廓数据则由摄影测量模型补充(图10(c))。目前这些问题只能通过目视判断并手动修正。
Fig. 10 Crossection of ancient pagoda and details

图10 古塔结构剖面及其细部

3.3 扭转分析

采用常规测量方法获取古塔每层的结构特征极其困难(视角受限且获取密集特征费时费力),融合古塔模型补充了激光雷达扫描塔顶的边缘特征,通过结构剖切分析,可以快速精确地得到古塔的扭转姿态。融合古塔模型俯视图(图11(a)),对每一层沿着古塔最外沿进行剖切,得到每一层剖切图,以第1层(或北方向)作为参照,得到每一层的扭转相对扭转角度(图11(b))。
Fig. 11 Twisting analysis of pagoda

图11 古塔扭转分析

图11可看出,古塔每一层扭转程度不同,向上层扭曲角度逐步增大,第10层相对于正北方向扭转最大当前达到11.556°。

4 结论

本文针对古塔变形监测,采用常规测量、地面激光雷达以及无人机航拍近景摄影测量方法3种技术手段获取古塔三维数据,在传统测量基础上对激光点云与摄影测量模型进行融合,最后通过融合数据对古塔变形进行了详细分析,通过实验分析可见,常规测量方法进行古塔变形监测,具有精度高,应用灵活特点,监测精度达到毫米级乃至亚毫米级(沉降观测),适用于古建筑整体姿态或者典型特征监测,对于精细的结构监测则会大大增加外业工作量;地面激光雷达技术精度高、设站灵活,能够精确分析古塔整体及部分局部的形变,但容易受到地面扫描视角的影响,导致高层扫描数据不完整;无人机近景摄影测量技术建立的古塔三维模型具有高精度及真实的色彩,对整体及细节纹理表现好,但是对局部几何精度略低于前两种方法。融合的三维模型能够弥补单一三维测量手段不足,得到相对完整的古塔三维模型,方便对塔的整体姿态、扭转、内外结构关系及局部相对几何姿态进行全面分析,此外,多源数据之间还可以针对古塔的各种相关病害问题相互验证。
将近景摄影测量技术与三维激光扫描技术融合应用于建筑遗产变形监测等领域,不仅可以利用摄影测量影像生成点云作为三维激光扫描点云的补充,还可利用影像的丰富纹理信息来提高点云的处理效率,几种技术的集成研究具有重要意义,数据融合中如何处理不同数据的几何及纹理误差是亟待解决的问题。

The authors have declared that no competing interests exist.

[1]
Firat Uray A, Metin A, Varlik. 3D architectural surveying of diyarbakir wall’s Ulu Beden Tower with terrestrial laser scanner[J]. Journal of Procedia Earth and Planetary Science, 2015,15:73-78.Turkey is one of the countries hosting many historical monuments. Many different cultures left rich traces of civilization in Anatolia. Keeping historical artifacts and documentation of these works is very important for the protection of this heritage. The technological progress changed the methods of surveying applications used nowadays. The changes in the methods of surveying applications reflected in the building survey applications too. The traditional surveying methods were replaced by digital photogrammetry and then by laser scanning methods. This work is contains the building survey of the Ulu Beden tower which is a part of Diyarbakir walls. Diyarbakir is a province in southeastern Turkey and in the past, it was home for many civilizations. Hittites, Persia, Macedonian and Seleucid Greeks, Rome, Byzantium, Arabs, Seljuk Empire, Mongol Empire and Ottoman Empire are among these civilizations leaving the traces in Diyarbakir. Diyarbakir wall is the second longest wall after the Great Wall of China. Hundreds of years after the construction of the walls, it is necessary to protect and restore it due to the corruption and demolition over time. In total, 45 stations were built for an architectural survey with laser scanner and the gathered point cloud data were combined together within computer environment to obtain a 3D model of the structure.

DOI

[2]
阳连武. 古塔变形研究[J].科技广场,2013(8):18-20.

[ Yang L W.Research on ancient pagoda deformation[J]. Science Mosaic, 2013(8):18-20. ]

[3]
陆建华,吕志才.基于多时相点云数据的大型古建筑形变监测研究——以苏州虎丘塔为例[J].工程勘察,2016(7):53-58.

[ Lu J H, Lv Z C.Deformation monitoring of large ancient architectural buildings based on multi-temporal point cloud: A case study of Suzhou Tiger Hill Pagoda[J]. Geotechnical Investigation & Surveying, 2016(7):53-58. ]

[4]
Fryskowska A, Walczykowski P, Delis P, et al.ALS and TLS data fusion in cultural heritage documentation and modeling[C]. International Society for Photogrammetry and Remote Sensing, 2015:147-150.

[5]
Uray F, Metin A, Varlik A.3D architectural surveying of Diyarbakir Wall′s Ulu Beden Tower with terrestrial laser scanner[J] Procedia Earth and Planetary Science, 2015,15:73-78.Turkey is one of the countries hosting many historical monuments. Many different cultures left rich traces of civilization in Anatolia. Keeping historical artifacts and documentation of these works is very important for the protection of this heritage. The technological progress changed the methods of surveying applications used nowadays. The changes in the methods of surveying applications reflected in the building survey applications too. The traditional surveying methods were replaced by digital photogrammetry and then by laser scanning methods. This work is contains the building survey of the Ulu Beden tower which is a part of Diyarbakir walls. Diyarbakir is a province in southeastern Turkey and in the past, it was home for many civilizations. Hittites, Persia, Macedonian and Seleucid Greeks, Rome, Byzantium, Arabs, Seljuk Empire, Mongol Empire and Ottoman Empire are among these civilizations leaving the traces in Diyarbakir. Diyarbakir wall is the second longest wall after the Great Wall of China. Hundreds of years after the construction of the walls, it is necessary to protect and restore it due to the corruption and demolition over time. In total, 45 stations were built for an architectural survey with laser scanner and the gathered point cloud data were combined together within computer environment to obtain a 3D model of the structure.

DOI

[6]
M Martorelli, C Pensa, D Speranza.Digital photogrammetry for documentation of maritime heritage[J]. Journal of Maritime Archaeology, 2014,9(1):81-93.Documentation of maritime heritage is essential for its protection, and for reference in restoration and renovation processes. These functions become problematic in the case of historical ships and boats that lack lines drawings. The purpose of this paper is to describe a procedure for creation of lines drawings based on the shape analysis of surviving historical boats or their small-scale models with the help of reverse engineering (RE) techniques. The paper describes how digital photogrammetry and the iterative method were used to analyze the shape of three historical boats: Tomahawk , Refola and Nada. The application of the proposed procedure produced the lines drawings of the boats as its result. The accuracy of the 3D CAD model obtained with the photogrammetric technique was verified by comparing it against a more accurate 3D model produced with the help of a RE laser scanner. The examination of the resulting lines drawings proves that the digital photogrammetry process and the proposed iterative method are adequate tools for developing lines plans of boat models. The research offers the methodological basis for the creation of an archive of lines drawings of historical boats. Such an archive would provide reference for philologically correct restorations, and permit definition and classification of distinctive elements of various types of historical boats, particularly those produced in the Campania Region.

DOI

[7]
Majid Z, Ariff M F M , Idris K M , et al. Three-dimensinal mapping of an ancientg cave paintings using close-range photogrammetryand terrestrial laser scanning technologies[C]. International Society for Photogrammetry and Remote Sensing, 2017:453-457.

[8]
Toshikazu H, Chikahiro M, Yasushi N, et al. Seismic and wind performance of five-storied pagoda of timber heritage structure[J]. Advanced Materials Research, 2010,133-134:79-95.In Japan, there exist a total of 22 five-storied timber pagodas constructed before the middle of 19 centuries. All of those pagodas are registered as the important cultural heritages by Japanese Government, while some of them are listed in World Cultural Heritages such as Horyu-ji Temple s Pagoda that was built in the end of 7th century. As those timber pagodas in seismic areas have survived against earthquakes during their long histories, their earthquake resistant capacity has been studied for a century. However, the actual dynamic behaviors of timber pagodas subjected to large earthquakes should be recorded to understand the seismic performance. Furthermore, an interesting structural issue has recently risen of wind resistant capacity of traditional five-storied timber pagodas, as such tall timber structures may be severely affected by strong wind. In order to record the actual dynamic behaviors during not only earthquakes but also typhoons, we have been conducting earthquake and wind monitoring at Hokekyou-ji Temple in Ichikawa City, next to Tokyo, which has survived for 4 centuries against not only large earthquakes but also severe typhoons. Hence, while the earthquake monitoring has been done by the conventional method utilizing accelerometers, the dynamic displacement of the structural response to wind has been directly measured by a new technique employing an image process system using LED makers and CCD camera, because the wind response includes much longer period component in general, therefore, it must be difficult to measure accurately the wind response by accelerometers. The scope of the present paper are 1) to review the past studies to understand the excellent earthquake resistance of five-storied timber pagodas, as well as, to introduce our research project of seismic and wind monitoring that has been successfully conducted since 2007, 2) to interpret those monitoring records which would be useful for understanding seismic and wind performance of the heritage timber pagodas that have survived for many centuries with describing the simulation analysis of seismic response, and 3) to show the long term monitoring records of the horizontal displacement of the heritage structure.

DOI

[9]
Minowa C, Matsuda M, Niitsu Y, et al.Seismic and strong wind response observation of national heritage five sroty wood Pagoda and its consideration: Part1 observation including 2011 Touhoku off-Pacific Ocean Earthqukake response by image processing[J]. J.struct.constr.eng, 2013,78:1787-1796.

[10]
周伟,李奇,李畅.利用激光扫描技术监测大型古建筑变形的研究[J].测绘通报,2012(4):52-54.通过对颐和园佛香阁的激光扫描,完成佛香阁整体点云数据的拼接,并使用椭圆拟合方式描述佛香阁的通天柱,最终得到佛香阁通天柱的倾斜方向及倾斜角度,为古建筑保护提供数据支撑。

[ Zhou W, Li Q, Li C.Deformation monitoring study on large scale heritage building using laser scanning technologies[J]. Bulletin of Surveying and Mapping, 2012(4):52-54. ]

[11]
孙强,肖云.基于灰色模型的古塔变形分析预测[J].西安航空学院学报,2014,32(3):67-72.通过对某古塔四次观测的数据建 立数学模型,补充缺省数据,通过算数平均数计算出古塔各层中心坐标,利用线性拟合和非线性拟合以及方向余弦等知识对古塔的倾斜、弯曲、扭曲、以及未来发展 趋势作了研究。借助matlab进行大量计算,最终较为客观地反应出古塔近年来的各种变化趋势,所用模型具有可行性。

DOI

[ Sun Q, Xiao Y.Grey model - based ancient tower deformation analysis and forecast[J]. Journal of Xi′an Aeronautical University, 2014,32(3):67-72. ]

[12]
Duan L, Wang P.Research of deformation of ancient pagoda based on mathematical nodel[J]. Journal of Software Engineering, 2015,9(2):373-382.

[13]
Jo Y H, Lee C H.Behavioral monitoring and stability evaluation of Korean stone pagoda in Magoksa Temple using tiltmeter sensor[J]. International Journal of Applied Engineering Research, 2014,9(22):14659-14668.Abstract This study focused on a structural stability evaluation for the Magoksa Temple stone pagoda based on tiltmeter behavioral monitoring. First, automatic monitoring system composed of tiltmeter sensors, data logger and solar cell was established to examine the behavioral characteristics of the stone pagoda. The behavioral monitoring showed that the fifth story of the stone pagoda moved, displaying a rotation of 14.40 μrad and displacement of 0.09 mm to the northeast (azimuth; 75°). On the other hand, the basement also moved, showing a rotation of 1376.50 μrad and a displacement of 1.93 mm to the southwest (azimuth; 260°). Therefore, it is necessary to prepare a conservation plan to reduce and reinforce structural stability and to carry out ground exploration to calculate the structure’s load carrying strengths with the implementation of continuous structural monitoring.

[14]
黄强. 古塔变形监测的探讨[J].测绘与空间地理信息,2013,36(6):217-220.以上海市文物局对上海市重点保护文物13座古塔进行变形监测的项目为例,探讨了在城市各种复杂地形上采集数据的内容与方法,并浅谈了数据的稳定性和古塔检测的周期。

DOI

[ Huang Q.Discussion on deformation monitoring of old towers[J]. Geomatics & Spatial Information Technology, 2013,36(6):217-220. ]

[15]
Grenzdörffer G J, Naumann M, Niemeyer F, et al.Symbiosis of UAS photogrammetry and TLS for surveying and 3D modeling of cultural heritage monuments: A case study about the cathedral of ST. Nicholas in the city of Greifswald[C]. Photogramm. Remote Sens. Spatial Inf. Sci., XL-1/W4, 2015:91-96.

[16]
李哲,周成传奇,闫宇,等.低空摄影测量及三维数据处理在砖石塔测绘中的实践应用——以天津独乐寺塔为例[J].中国文化遗产,2016(3):61-67.

[ Li Z, Zhou C C Q, Yan Y, et al. UAV photogrammetry and 3D data processing in application of surveying for brick tower: A case study for Tianjin dule temple tower[J]. Journal of Chinese Cultural Heritage, 2016(3):61-67. ]

[17]
Pesci A, Casula G, Boschi E.Laser scanning the Garisenda and Asinelli towers in Bologna (Italy): Detailed deformation patterns of two ancient leaning buildings[J]. Journal of Cultural Heritage, 2011,12(2):117-127.The Asinelli and Garisenda towers are the main symbols of the city of Bologna (Italy). These leaning towers, whose heights are about 97 and 48 m respectively, were built during the early 12 th century and are two of the few surviving ones from about 100 tall medieval buildings that once characterized the city. Therefore, they are part of the Italian cultural heritage and their safeguard is extremely important. In order to evaluate in detail the deformations of these towers, in particular the deviations from a regular inclination of their walls, the terrestrial laser scanning (TLS) has been used and an efficient direct analysis method has been developed. The towers have been scanned from six viewpoints, providing 19-point clouds with a complete coverage of the visible surfaces with large overlap areas. For each tower, after the registration of the partial point clouds into a common reference frame, an accurate morphological analysis of the acquired surfaces has been carried out. The results show several zones affected by significant deformations and inclination changes. In the case of the Asinelli tower, for which a finite element model is available, the results have also been interpreted on the basis of the static load and normal modes. The correspondence between the measured deformation and the theoretically expected deformation, caused by a seismic sequence, is clear. This fact suggests a high sensibility of the tower to dynamic loads. Although a direct evaluation of the risk cannot be carried out with the obtained results, they lead to the general indication that the structural health of these buildings must be frequently checked and that man-made loads (e.g. vibration due to vehicular traffic) should be avoided or at least reduced.

DOI

[18]
赵国强. 基于三维激光扫描与近景摄影测量数据的三维重建精度对比研究[D].焦作:河南理工大学,2012.

[ Zhao G Q.Precision comparison of 3D reconstruction based on 3D laser scanning date and close shot photogrammetic data[D]. Jiaozuo: Henan Polytechnic University, 2012. ]

[19]
王一. 基于无人直升机航拍照片的三维目标重建技术[D].上海:上海交通大学,2010.

[ Wang Y.Devepment of a reconstruction technlogy of 3D map based on pictures from UAV[D]. Shanghai: Shanghai Jiao Tong University, 2010. ]

[20]
赵云景,龚绪才,杜文,等. PhotoScan Pro软件在无人机应急航摄中的应用[J].国土资源遥感,2015,27(4):179-182.lt;p>在无人机应急测绘保障中,存在航线设计不规则、航摄倾角过大等问题,如果利用传统航摄软件处理这类影像将会消耗较长的时间,进而严重影响应急测绘保障服务的时效性。为此,提出了一种利用PhotoScan Pro软件快速生成正射影像和点云的方法来解决此类问题。通过在多次地质灾害预防及处置中的实际应用,表明该方法能够为测绘应急保障服务提供及时有效的影像数据。</p>

DOI

[Zhao Y J,Gong X C, Du W, et al.UAV imagery data processing for emergency response based on PhotoScan Pro[J]. Remote Sensing for Land and Resources, 2015,27(4):179-182. ]

文章导航

/