以坡位为空间配置单元的流域管理措施情景优化方法
作者简介:高会然(1992-),男,博士生,现从事遥感与寒区流域水文过程模拟研究。E-mail: gaohr@radi.ac.cn
收稿日期: 2017-12-21
要求修回日期: 2018-02-02
网络出版日期: 2018-06-20
基金资助
国家自然科学基金项目(41431177、41422109)
资源与环境信息系统国家重点实验室自主部署项目(O88RA20CYA)
Using Slope Positions as Spatial Units for Optimizing Spatial Configuration of Watershed Management Practices
Received date: 2017-12-21
Request revised date: 2018-02-02
Online published: 2018-06-20
Supported by
National Natural Science Foundation of China, No.41431177,41422109
Innovation Project of LREIS, No.O88RA20CYA
Copyright
基于流域过程模型的BMP情景分析是当前流域管理措施评价、非点源污染控制等研究应用中广泛采用的方法,但其通常采用的BMP空间配置单元(地块、农场、水文响应单元或子流域)与坡面上的地形部位关系较弱,难以有效地根据坡面过程特点表达坡面上多种BMP之间的空间配置关系,影响了BMP情景优化效率和结果的合理性。为此,本文提出以坡位单元作为BMP空间配置单元,将各种BMP在不同坡位间合理的空间配置关系显式表达为基于坡位的空间配置规则,通过结合NSGA-II优化算法建立了一套基于坡位单元的BMP空间配置优化方法。应用案例表明,本文构建的基于坡位单元的BMP情景优化方法可有效利用基于坡位的空间配置规则进行BMP情景优化,优化所得的BMP空间配置方案更为合理,优化效率较高。
高会然 , 秦承志 , 朱良君 , 朱阿兴 , 刘军志 , 吴辉 . 以坡位为空间配置单元的流域管理措施情景优化方法[J]. 地球信息科学学报, 2018 , 20(6) : 781 -790 . DOI: 10.12082/dqxxkx.2018.170622
Scenario analysis based on watershed process model is a widely used method for evaluating watershed management practices (BMP) and controlling non-point source pollution. The commonly used spatial configuration units in current scenario analysis include fields, farms, hydrologic response units, and sub-basins. The weak spatial relationships between these spatial units and the topographic positions along hillslope make the use of these spatial units difficult to effectively represent the effect of different BMP on hillslope processes, and thus affect the efficiency and reasonability of optimized scenarios. In this paper, slope positions are used as the spatial configuration units of BMP under the framework of spatially distributed watershed process model and intelligent optimization method for BMP scenarios. Thus, the knowledge of the spatial relationships between BMP and slope positions can be explicitly considered during optimization. A spatially distributed watershed process model (i.e., SEIMS) and an intelligent optimization algorithm (i.e., the genetic algorithm NSGA-II) were combined in this framework in this paper. A small watershed of red soil dominant region in the east of Hetian county, Changting city, Fujian province, was selected as the case study area. The BMP knowledge base including the relationship between five BMP used in this area and slope positions was built for the study area. The experimental results showed that slope position units can well support the description and application of the knowledge on the spatial configuration of different BMP, compared with the BMP configuration units of fields with upslope-downslope relationship. The proposed method can use BMP spatial configuration knowledge to provide optimal BMP scenarios reasonably and effectively, compared with the random optimization method, a typical BMP scenario optimization method of using NSGA-II optimization algorithm with operations of population initialization, crossover, and mutation randomly.
Fig. 1 Illustration of a comprehensive management scheme for watershed soil and water conservation in southeast China图1 流域水土保持综合治理模式示意图[5] |
Fig. 2 Framework of BMP scenario optimization using slope positions as spatial configuration units图2 基于坡位单元的BMP情景优化方法框架 |
Fig. 3 Maps of Youwuzhen watershed图3 游屋圳小流域空间位置及DEM |
Tab. 1 Relationships between BMP and slope positions表1 5种BMP及其适宜配置的坡位类型 |
BMP | 措施特点 | 治理效果 | 适宜配置坡位 |
---|---|---|---|
封禁治理 | 适宜在流域边缘、离居民点较远、高山陡坡的轻度水土流失地实施 | 促进植物的生长,增大冠层截流量;提高蓄水保土能力 | 山脊、背坡 |
生态林草 | 在未达到封育成林强度的水土流失地和园地上方种植生态林草 | 加快地表植被覆盖;增加地表粗糙度,降低坡面汇流速度 | 山脊、沟谷 |
经济林果 | 在坡地较缓、水肥条件较好的山坡中、下部种植经济林果 | 加速土壤改良,防止水土流失;促进果树生长 | 沟谷 |
低效林改造 | 适宜在立地条件较差的中度水土流失地与立地条件较好的强度流失坡地实施 | 促进植物的生长;增加地表粗糙度;降低坡面汇流速度 | 背坡 |
果园坡改梯 | 针对原有埂沟残缺造成水土流失严重之地进行整改 | 减小山坡的坡度,降低径流速度;减少径流的侵蚀力 | 背坡 |
Tab. 2 Economic costs and benefits of different BMP表2 不同BMP的经济成本及经济效益 |
BMP | 成本/(万元/km2) | 年均效益/(万元/km2) |
---|---|---|
封禁治理 | 1.80 | 5.94 |
生态林草 | 72.88 | 20.64 |
经济林果 | 113.16 | 18.75 |
低效林改造 | 33.43 | 11.64 |
果园坡改梯 | 78.34 | 1312.50 |
Fig. 4 Map of slope position units of the study area图4 研究区坡位单元划分结果 |
Tab. 3 Sub-process modules used in SEIMS model for the Youwuzhen watershed表3 游屋圳小流域SEIMS建模子过程模块列表 |
过程 | 子过程 | 模块算法 |
---|---|---|
气候、降水 | 气象数据进行泰森 多边形空间插值 | |
坡面过程 | 土壤温度 | Finn Plauborg方法 |
潜在蒸散发 | Priestley-Taylor公式 | |
植被冠层截留 | Maximum Storage方法 | |
入渗/地表径流 | Modified Rational方法 | |
填洼/地表径流 | Linsley方法 | |
坡面侵蚀 | MUSLE模型 | |
渗漏 | Brooks-Corey公式 | |
壤中流 | Darcy定律及运动波方程 | |
植物潜在蒸腾及 土壤实际蒸发 | SWAT模拟方法 | |
植物生长 | 简化的EPIC模型 | |
地下水 | 线性水库 | |
坡面汇流 | 瞬时地貌单位线法 | |
侵蚀坡面汇流 | 瞬时地貌单位线法 | |
河道汇流 | 河道汇流 | Muskingum方法 |
河道侵蚀 | 简化的Bagnold公式 |
Fig. 5 Result of runoff simulation at the watershed outlet of the study area in 2014图5 2014年研究区流域出口径流模拟率定结果 |
Fig. 6 Result of sediment simulation at the watershed outlet of the study area in 2014图6 2014年研究区流域出口含沙量模拟率定结果 |
Fig. 7 Comparison of the Pareto fronts derived from the proposed method and the method based on the fields with the upslope-downslope relationship under different generations图7 本文方法和基于上下游地块单元优化方法在不同运行代数下的Pareto前沿对比 |
Fig. 8 Comparison of the Pareto fronts derived from the proposed method and the random optimization method under different generations with a population of 60图8 本文方法与随机优化方法在种群规模为60时不同运行代数下的Pareto前沿对比 |
Fig. 9 An selected BMP scenario with high cost generated by the random optimization method图9 随机优化方法产生的一个高成本BMP优化情景 |
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
[
|
[5] |
[
|
[6] |
[
|
[7] |
|
[8] |
|
[9] |
[
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
[
|
[23] |
[
|
[24] |
[
|
[25] |
|
[26] |
|
[27] |
[
|
[28] |
|
[29] |
|
[30] |
|
[31] |
[
|
[32] |
[
|
[33] |
|
/
〈 | 〉 |