城市空间结构要素与人群聚散稳定性的关联性探索
作者简介:杨喜平(1986-),男,博士,讲师,主要从事时空轨迹大数据挖掘与人群移动行为研究。E-mail: xpyang@snnu.edu.cn
收稿日期: 2018-01-02
要求修回日期: 2018-03-19
网络出版日期: 2018-06-20
基金资助
国家重点研发计划项目(2017YFC1405302, 2017YFB0503802)
国家自然科学基金项目(41771473、41231171、41771441、41571135)
中国博士后科学基金项目(2017M623112、2018M632860)
中央高校基本科研业务费资助项目(GK201803049、2042017kf0235)
Exploring the Relationship between Urban Spatial Structure and the Stability of Human Convergence-divergence
Received date: 2018-01-02
Request revised date: 2018-03-19
Online published: 2018-06-20
Supported by
National Key Research and Development Program of China, No.2017YFC1405302, 2017YFB0503802
National Natural Science Foundation of China, No.41771473, 41231171, 41771441, 41571135
China Postdoctoral Science Foundation, No.2017M623112, 2018M632860
Fundamental Research Funds for the Central Universities, No.GK201803049, 2042017kf0235
Copyright
人群移动和城市空间结构的关系研究一直是人文地理关注的焦点,它可以帮助理解人群城市空间中移动的潜在动力和影响因素,从而评价城市空间结构的合理性,对城市规划、选址具有重要意义。轨迹大数据为研究城市大规模群体活动、城市空间结构以及二者的关系提供了新视角。本文以人群聚散稳定性为切入点,以深圳市交通小区为分析单元,从社会经济属性、土地利用模式和路网中心性3个方面定量探索城市空间结构特征与人群聚散稳定性的关联性。结果发现:区域的人口数量和密度越大,人群聚散稳定性越低;土地利用混合度越高,均衡性越低,人群聚散稳定性越低;与路网全局中心性比,局部范围内的路网中心性对人群聚散稳定性的影响较大,并且随着距离不同而发生变化。这些知识帮助加深理解人群聚散与城市空间结构特征之间的关系。
杨喜平 , 方志祥 , 尹凌 . 城市空间结构要素与人群聚散稳定性的关联性探索[J]. 地球信息科学学报, 2018 , 20(6) : 791 -798 . DOI: 10.12082/dqxxkx.2018.180026
The relationship between human mobility and urban spatial structure has been a long research topic in human geography, which is helpful for understanding the impacts of human mobility and assessing the rationality of urban spatial structure, thus, important and meaningful for urban planning, traffic management, location selection and emergency management. Traditional studies take advantage of travel survey dataset to investigate the relationship between human travel behavior and urban built environment, which makes it difficult to study human convergence and divergence due to the limitation of small sample size. Recently, with the development of Information Communication Technology (ICT), it is possible to collect massive and long-term human spatio-temporal tracing dataset (such as mobile phone data, social media check-in data, floating cars data and so on), which brings a new perspective of studying urban human mobility, spatial structure and their relationship. Based on the previous study, this study focus on the stability of human convergence and divergence, takes traffic analysis zones as spatial analysis unit, aims to explore the correlation between urban spatial structure and the stability of human convergence and divergence. The indicators representing urban structure are constructed from the aspects of socio-economic, land use patterns and urban road network characteristics, respectively. The multiple linear programming is employed to examine the influence of these indicators on the stability of human convergence and divergence. We found that the bigger the population size and density of a place, the less stable the human convergence and divergence. The degree of the mixture of the land use is positively associated with the stability. As for the centrality of road network, the local centrality has significant influence on the stability of human mobility and the impact is different with the increasing of search distance. These knowledges can deepen our understanding of relationship between human mobility and urban spatial structure, which can be utilized by urban operators to guide urban planning, traffic management and make some emergency measures.
Fig. 1 The time sequence of human convergence and divergence图1 人群聚散变化序列示意图 |
Fig. 2 The stability of Traffic Analysis Zones (TAZs)图2 深圳市交通小区稳定性[15] |
Tab. 1 The regression results of socio-economic factors表1 社会经济属性回归结果 |
自变量 | 因变量:聚散稳定性 | ||
---|---|---|---|
系数() | 标准差() | 值 | |
常数项 | 0.000 | 0.044 | 0 |
人口() | -0.293*** | 0.064 | -4.580 |
面积() | 0.061 | 0.047 | 1.306 |
人口密度() | -0.188*** | 0.066 | -2.859 |
房价() | -0.024 | 0.044 | -0.528 |
R2 | 0.207 | ||
调整R2 | 0.199 | ||
F检验 | 26.27*** |
注:***p<0.01 |
Tab. 2 The regression results of land use表2 土地利用结构的回归结果 |
自变量 | 因变量:聚散稳定性 | ||
---|---|---|---|
系数() | 标准差() | 值 | |
常数项 | -0.0001 | 0.005 | -0.004 |
土地利用比例 | |||
商业() | -7.100 | 5.540 | -1.280 |
工业() | 9.020 | 0.211 | 0.427 |
居住() | 22.900 | 0.183 | 1.250 |
公共() | -1.200 | 0.108 | -0.110 |
交通() | -1.140 | 0.107 | -0.107 |
其他() | -4.690 | 0.259 | -0.181 |
土地利用区位熵 | |||
商业() | 0.926 | 0.109 | 0.085 |
工业() | -33.700 | 0.436 | -0.773 |
居住() | -44.500 | 0.394 | -1.130 |
公共() | -11.300 | 0.229 | -0.494 |
交通() | -11.800 | 0.226 | -0.522 |
其他() | -25.600 | 0.432 | -0.594 |
信息熵和均衡度 | |||
信息熵() | -0.539*** | 0.085 | -6.360 |
均衡度() | 0.437*** | 0.088 | 4.990 |
R2 | 0.241 | ||
调整R2 | 0.229 | ||
F检验 | 20.809*** |
注:***p<0.01 |
Tab. 3 The regression results of closeness centrality表3 路网接近中心性的回归结果 |
自变量 | 因变量:聚散稳定性 | ||
---|---|---|---|
系数() | 标准差() | 值 | |
常数项 | 0.000 | 0.030 | 0.000 |
0.029 | 0.097 | 0.300 | |
1.136*** | 0.183 | 6.217 | |
-1.024** | 0.424 | -2.416 | |
1.887* | 1.032 | 1.829 | |
-3.388*** | 1.025 | -3.304 | |
0.883 | 0.809 | 1.092 | |
0.342 | 0.225 | 1.518 | |
R2 | 0.156 | ||
调整R2 | 0.150 | ||
F检验 | 24.488*** |
注:*p<0.1;**p<0.05;***p<0.01 |
Tab. 4 The regression results of betweenness centrality表4 路网介数中心性的回归结果 |
自变量 | 因变量:聚散稳定性 | ||
---|---|---|---|
系数() | 标准差() | 值 | |
常数项 | 0.000 | 0.031 | 0.000 |
0.306*** | 0.073 | 4.216 | |
-0.421*** | 0.074 | -5.676 | |
0.227 | 0.168 | 1.354 | |
0.077 | 0.293 | 0.262 | |
0.307 | 0.457 | 0.672 | |
-0.981 | 0.567 | 1.731 | |
-0.221 | 0.335 | -0.660 | |
R2 | 0.118 | ||
调整R2 | 0.111 | ||
F检验 | 17.685*** |
注:***p<0.01 |
Tab. 5 The regression results of straightness centrality表5 路网直达中心性回归结果 |
自变量 | 因变量:聚散稳定性 | ||
---|---|---|---|
系数() | 标准差() | 值 | |
常数项 | 0.000 | 0.029 | 0.000 |
0.093*** | 0.031 | 2.997 | |
-0.289*** | 0.056 | -5.190 | |
0.058 | 0.089 | 0.648 | |
0.009 | 0.138 | 0.065 | |
-0.374 | 0.198 | -1.893 | |
0.339 | 0.218 | 1.556 | |
-0.335*** | 0.141 | -2.380 | |
R2 | 0.223 | ||
调整R2 | 0.217 | ||
F检验 | 37.821*** |
注:***p<0.01 |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
[
|
[3] |
|
[4] |
[
|
[5] |
[
|
[6] |
[
|
[7] |
|
[8] |
[
|
[9] |
[
|
[10] |
|
[11] |
[
|
[12] |
|
[13] |
[
|
[14] |
|
[15] |
|
[16] |
[
|
[17] |
|
[18] |
|
[19] |
[
|
[20] |
[
|
[21] |
[
|
[22] |
[
|
[23] |
|
[24] |
|
[25] |
|
[26] |
[
|
[27] |
|
/
〈 | 〉 |