突发河流污染事件应急资源调度动态规划模型研究
作者简介:吴在栋(1990-),男,硕士生,主要从事GIS在灾害中的应用研究。E-mail: zaidongwu@126.com
收稿日期: 2018-01-02
要求修回日期: 2018-03-20
网络出版日期: 2018-06-20
基金资助
国家重点研发计划重点专项(2016YFC0502905)
福建省公益科研院所专项(2015R1034-1)
福建省测绘地理信息局科技资助项目(2017JX03)
A Dynamic Planning Model of Emergency Resource Scheduling for Sudden River Pollution Incident
Received date: 2018-01-02
Request revised date: 2018-03-20
Online published: 2018-06-20
Supported by
National Key Research and Development Program of China, No.2016YFC0505905
Non-profit Research Projects of Fujian Province, No.2015R1034-1
Development Foundation of Surveying, Mapping and Geoinformatics of Fujian Province, No.2017JX03
Copyright
突发事件的突然性和发展过程的不确定性,要求在限定的时间内,将足够的应急资源配送到合适的应急处置空间位置。本文构建了一个多源点多目标应急资源调度模型,该模型以最短应急处置时间为规划目标,以应急资源运输和应急工程构建时间之和必须小于污染物扩散到应急处置空间位置的时间、多个应急资源仓库综合调度资源数量必须满足处置需求为约束条件;在应急资源出库和装卸时间一定的情况下,根据污染物沿河流扩散的动态过程,运用Dijkstra算法实时选择应急资源配送的最优路径,计算各个仓库所需调度各类资源数量以及资源到达应急处置空间位置所需的时间;最终导出一个策略方案,并根据应急资源到达处置位置所用的时间与污染物扩散到该点的时间之比,评估该方案的决策风险。以突发六价铬污染为研究案例的实验结果表明:该模型能够验证各个应急处置空间位置能否作为应急处置点,获得应急处置空间位置最合理的应急资源调度方案、应急车辆动态的最优路线以及各应急处置点资源调度方案的决策风险评估结果,从而提高应急管理的决策效率,降低决策风险,该模型在救灾、溃坝等其他类似领域也具有一定适用性。
关键词: 河流污染; 突发事件; Dijkstra算法; 资源调度; 动态规划
吴在栋 , 林广发 , 张明锋 , 罗尊骅 , 周文娟 . 突发河流污染事件应急资源调度动态规划模型研究[J]. 地球信息科学学报, 2018 , 20(6) : 799 -806 . DOI: 10.12082/dqxxkx.2018.180023
Sudden river pollution accidents can occur suddenly and have the uncertainty of development. It is necessary to distribute sufficient emergency resources to the emergency disposal space within limited time. This study constructed a multi resource and multi objective emergency resource scheduling model. Based on the planning objective of shortest emergency disposal time, this model assumed the constraint condition that the total construction time of emergency resource transportation and emergency project must be less than the time that pollutants diffused and arrived the position of emergency disposal, and the multi emergency resource warehouse integrated scheduling resources must meet the processing needs. Assuming that the time of emergency resource's outgoing, loading and unloading is certain, according to the dynamic process of pollutants spreading along the river, the optimal route of dynamic emergency resource distribution was optimized by using Dijkstra algorithm. Then, the time for the amount of resources required from each warehouse to reach the emergency disposal space was calculated. Finally, a strategic solution was exported and the risk of the decision-making was evaluated according to the ratio between the time that emergency resource arrived in disposal position and the time which the pollutants spread to the point. By setting the burst of six valency chromium pollutants as one case study, the experimental results show that the model can verify whether each emergency disposal space position can be treated as the emergency disposal point; the most reasonable emergency resource scheduling scheme at the emergency disposal space position can be obtained; and the emergency vehicle dynamic optimal route can be determined. Besides, the results evaluated the assessment of decision-making risk of emergency resource scheduling for each emergency disposal space position, improved the emergency management decision-making efficiency and reduced the decision-making risk. In addition, the model also had certain applicability in other similar fields, such as disaster relief in cases of dam-break and so on.
Fig. 1 The flow chart of emergency resource scheduling algorithm图1 应急资源调度算法流程图 |
Tab. 1 The division of risk score and risk qualitative classification表1 决策风险分值与风险定性等级划分 |
风险定性等级 | |||||
---|---|---|---|---|---|
低 | 较低 | 中 | 较高 | 高 | |
决策风 险分值 | [0,0.2] | (0.2,0.4] | (0.4,0.6] | (0.6,0.8] | (0.8,1.0] |
Tab. 2 The type and quantity of emergency resources for emergency resources warehouse表2 应急资源仓库应急资源种类及数量 |
仓库名称 | 活性炭/kg | NaHSO3/kg | H2SO4/kg | 石灰/kg | 编织袋/只 |
---|---|---|---|---|---|
A | 259.25 | 153.69 | 325.48 | 346.02 | 500 |
B | 369.24 | 465.26 | 596.11 | 625.54 | 456 |
C | 456.32 | 789.54 | 759.54 | 596.09 | 722 |
D | 289.65 | 356.55 | 659.54 | 496.09 | 802 |
E | 698.25 | 879.66 | 325.36 | 479.32 | 856 |
Tab. 3 The type and quantity of emergency resources needed for emergency disposal of space表3 应急处置空间位置所需应急资源种类及数量 |
处置点名称 | 活性炭/kg | NaHSO3/kg | H2SO4/kg | 石灰/kg | 编织袋/只 |
---|---|---|---|---|---|
a | 598.23 | 798.35 | 987.25 | 1549.68 | 958 |
b | 869.36 | 569.58 | 653.68 | 996.78 | 1559 |
c | 1025.56 | 456.36 | 456.36 | 563.57 | 1850 |
Tab. 4 The scheme of emergency resource scheduling表4 应急资源调度方案 |
处置点 | 污染物扩散时间/min | 资源种类 | 资源数量 | 仓库 | 供应数量 | 所需时间/min | 决策风险分值 |
---|---|---|---|---|---|---|---|
a | 15 | 活性炭 | 598.23 | - | - | 58 | >1.0 |
NaSO3 | 798.35 | - | - | 58 | >1.0 | ||
H2SO4 | 987.25 | - | - | 58 | >1.0 | ||
石灰 | 1549.68 | - | - | 58 | >1.0 | ||
编织袋 | 958 | - | - | 58 | >1.0 | ||
b | 70 | 活性炭 | 869.36 | B | 369.24 | 52 | 0.74 |
C | 456.32 | 56 | 0.80 | ||||
E | 43.80 | 66 | 0.94 | ||||
NaSO3 | 569.58 | B | 465.26 | 52 | 0.74 | ||
C | 57.57 | 56 | 0.80 | ||||
H2SO4 | 653.68 | B | 596.11 | 52 | 0.74 | ||
C | 391.25 | 56 | 0.80 | ||||
石灰 | 996.78 | B | 625.54 | 52 | 0.74 | ||
C | 371.24 | 56 | 0.80 | ||||
编织袋 | 1559 | B | 456 | 52 | 0.74 | ||
C | 722 | 56 | 0.80 | ||||
E | 381 | 66 | 0.94 | ||||
c | 178 | 活性炭 | 1025.56 | E | 654.45 | 64 | 0.36 |
D | 289.65 | 79 | 0.44 | ||||
A | 81.46 | 118 | 0.66 | ||||
NaSO3 | 456.36 | C | 456.36 | 57 | 0.32 | ||
H2SO4 | 456.36 | C | 456.36 | 57 | 0.32 | ||
石灰 | 563.37 | C | 224.85 | 57 | 0.32 | ||
E | 338.52 | 64 | 0.36 | ||||
编织袋 | 1850 | E | 475 | 64 | 0.36 | ||
D | 802 | 79 | 0.44 | ||||
A | 500 | 118 | 0.66 | ||||
- | - | - |
Fig. 2 The control panel of emergency resource scheduling图2 应急资源调度控制面板 |
Fig. 3 The route of emergency resource scheduling图3 应急资源调度路线 |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
[
|
[3] |
|
[4] |
[
|
[5] |
[
|
[6] |
[
|
[7] |
[
|
[8] |
|
[9] |
|
[10] |
[
|
[11] |
|
[12] |
[
|
[13] |
[
|
[14] |
[
|
[15] |
|
[16] |
|
[17] |
[
|
[18] |
[
|
[19] |
[
|
/
〈 | 〉 |