四川省山洪灾害时空分布规律及其影响因素研究
作者简介:熊俊楠(1981-),男,四川南充人,副教授,主要从事地理信息系统与灾害风险分析方面的研究。E-mail: neu_xjn@163.com
收稿日期: 2018-04-16
要求修回日期: 2018-06-22
网络出版日期: 2018-10-17
基金资助
中国水利水电科学研究院全国山洪灾害调查评价项目(SHZH-IWHR-57)
国家自然科学基金项目(51774250)
西藏自治区科技支撑计划项目(省809)
西南石油大学科技创新团队项目(2017CXTD09)
Temporal-spatial Distribution and the Influencing Factors of Mountain-Flood Disasters in Sichuan Province
Received date: 2018-04-16
Request revised date: 2018-06-22
Online published: 2018-10-17
Supported by
IWHR (China Institute of Water Resources and Hydropower Research) National Mountain Flood Disaster Investigation Project, No.SHZH-IWHR-57
National Natural Science Foundation of China, No.51774250
The Tibet Autonomous Region Science and Technology Support Project, No.809
Southwest Petroleum University of Science And Technology Innovation Team Projects, No.2017CXTD09.
Copyright
山洪灾害时空分布规律及其影响因素,是灾害时空数据挖掘领域所关注的重点问题。本研究采用1950-2015年四川省历史山洪灾害事件数据,结合地统计、地理探测器、空间分析等方法,系统地分析了四川省1950-2015年历史山洪灾害的时空分布规律及其影响因素。结果表明:① 1950-2015年四川省山洪灾害数量整体呈先稳定后增长的趋势;山洪灾害主要集中在5-9月,7月覆盖率100%。② 县域灾害频次在南-北方向呈递减分布趋势;平均降雨量(历史山洪灾害过程降雨的平均值)在东-西方向呈指数型增长趋势,南-北方向由中部向南北递减。③ 1950s-2010s和5-9月历史累计山洪灾害重心及各标准差椭圆中心集中在四川中部地区,向东北方向移动,累计灾害点空间分布呈西南—东北格局。④ 县域山洪灾害数量及平均降雨量呈空间正自相关。⑤ 地理探测器分析表明自然因素、降雨、人类活动等因素对山洪灾害时空分布影响较大,其中不同降雨指标、高程标准差、坡度是山洪灾害时空分布规律的主要驱动因素。研究结果对查清四川省山洪灾害时空分布特征及小流域山洪监测预警、风险评价、防治区划等提供坚实的理论基础和科技支撑。
熊俊楠 , 赵云亮 , 程维明 , 郭良 , 王楠 , 李伟 . 四川省山洪灾害时空分布规律及其影响因素研究[J]. 地球信息科学学报, 2018 , 20(10) : 1443 -1456 . DOI: 10.12082/dqxxkx.2018.180193
The temporal-spatial distribution and influencing factors of mountain-flood disaster are a key issue in the disaster data mining. Using the historical mountain-flood catastrophe data that is learned from the National Mountain Flood Disaster Investigation Project from 1950 to 2015 in the Sichuan Province, and employing the methods in geo-statistics, geographic detector and geo-spatial analysis, this paper systematically analyzed the temporal-spatial distribution of historical mountain-flood disaster and the influencing factors in Sichuan Province. The main findings are the following : (1) The total amount of mountain-flood disasters in the Sichuan Province, from 1950 to 2015, remained stable and then increased rapidly. In addition, the catastrophe mainly occurred from May to September, especially in July every year. (2) The frequency of county disasters over Sichuan showed a decreasing trend from south to north. The average rainfall during historical mountain-flood disaster (ARD) increased exponentially from east to west, and decreased from middle to north. (3) From May to September each year and from1950s to 2010s, the center of gravity and the elliptical center of each standard deviation of the accumulated mountain-flood disaster are concentrated in the central part of Sichuan, moving to the northeast. The accumulated disaster points emerged in a pattern of southwest-northeast. (4) The spatial autocorrelation analysis indicates a positive spatial correlation between the amount of mountain-flood disaster and ARD in county area. (5) The geographic detector analysis indicates that natural factors, rainfall, human activity and other factors have a great influence on the temporal-spatial distribution of mountain-flood disaster. In particular, the main driving factors are the rainfall index, standard deviation of elevation and slope. The results provide a theoretical basis, scientific and technological support for the investigation of the temporal-spatial distribution characteristics of mountain-flood disaster in the Sichuan Province, which can also benefit the monitoring and early warning, the risk assessment, the prevention and control of mountain-flood disaster in small watersheds.
Fig. 1 Distribution of historical mountain torrents in Sichuan Province图1 四川省历史山洪灾害点分布 |
Fig. 2 The number and average rainfall of historical mountain-flood disaster events in Sichuan Province图2 四川省历史山洪事件数量及平均降雨量 |
Fig. 3 The number of historical mountain-flood disaster in each month图3 各月份历史山洪灾害数量 |
Fig. 4 The number and average rainfall of mountain-flood disaster in different periods图4 各年代历史山洪灾害数量及平均降雨量 |
Fig. 5 Spatial trend analysis of disaster quantity, average rainfall, economic loss and casualty in county area图5 县域灾害数量、平均降雨、经济损失、人员伤亡空间趋势分析 |
Fig. 6 Moving track of the center of gravity and standard deviation ellipse of historical mountain-flood disaster from 1950s to 2010s图6 1950s-2010s历史山洪灾害重心移动轨迹及标准差椭圆 |
Tab.1 Variation of gravity center and standard deviation of elliptical parameters in historical mountain-flood disaster表1 历史山洪灾害点重心及标准差椭圆参数变化 |
年代(s) | (x,y) | S/(km) | R/(°) | X(std/km) | Y(std/km) |
---|---|---|---|---|---|
1950 | (104°06'E 29°52'N) | 0 | 31.286 | 165.428 | 131.502 |
1960 | (104°16'E 30°15'N) | 44.957 | 27.733 | 214.612 | 120.166 |
1970 | (103°55'E 29°51'N) | 54.981 | 30.037 | 326.437 | 151.235 |
1980 | (104°26'E 30°10'N) | 59.511 | 45.449 | 258.547 | 161.959 |
1990 | (104°07'E 29°41'N) | 61.440 | 39.051 | 281.271 | 181.354 |
2000 | (104°37'E 29°51'N) | 50.985 | 45.945 | 358.121 | 205.776 |
2010 | 104°42′E 30°30´N | 73.633 | 51.348 | 281.190 | 157.570 |
注:(x,y):重心点坐标; S/(km): 重心点的移动距离;R/(°):标准差椭圆中,椭圆的方向角度;X:沿x轴的长半轴长度;Y: 沿Y轴的短半轴长度 |
Fig. 7 Movement track of the center of gravity and standard deviation ellipse of historical mountain-flood disaster from May to September图7 5-9月历史山洪灾害重心移动轨迹及标准差椭圆 |
Tab.2 Variation of gravity center and standard deviation of elliptical parameters in historical mountain-flood disaster表2 历史山洪灾害点重心及标准差椭圆参数变化 |
5月 | 6月 | 7月 | 8月 | 9月 | |
---|---|---|---|---|---|
(x,y) | (104°28'E 29°40'N) | (103°59'E 30°00'N) | (103°56'E 29°53'N) | (103°37'E 29°46'N) | (105°00'E 30°49'N) |
S/km | 0 | 58.187 | 14.495 | 32.020 | 174.55 |
R/° | 48.450 | 31.187 | 46.040 | 34.488 | 53.282 |
X(std/km) | 239.183 | 225.783 | 335.372 | 284.142 | 251.181 |
Y(std/km) | 204.515 | 183.707 | 181.039 | 183.186 | 127.615 |
注:(x,y):重心点坐标; S/(km): 重心点的移动距离;R/(°):标准差椭圆中,椭圆的方向角度;X:沿x轴的长半轴长度;Y: 沿Y轴的短半轴长度 |
Tab. 3 Moran's I index and P value of Global spatial autocorrelation表3 全局空间自相关性Moran's I指数与P值 |
各项指标 | 各县山洪 总数/起 | 死亡人员 总数/人 | 过程平均降雨/mm | 直接经济 损失/万元 |
---|---|---|---|---|
Moran's I指数 | 0.1169 | -0.0151 | 0.2765 | -0.00527 |
P值 | 0.007 | 0.054 | 0.001 | 0.305 |
Fig. 8 Regional spatial autocorrelation of the number of historical mountain-flood disasters and average rainfall图8 县域历史山洪灾害数量以及平均降雨量局部空间自相关分析 |
Fig. 9 Hazard distribution of historical mountain-flood in Sichuan Province图9 四川省历史山洪灾害危险度分布 |
Tab. 4 Geographical detection and analysis table of influence factors表4 影响因素地理探测分析表 |
探测指标 | Q | P | 排序(从大到小) |
---|---|---|---|
高程标准差(X1) | 0.1780 | 0.0000 | 6 |
坡度因子(X2) | 0.1781 | 0.0000 | 5 |
坡向因子(X3) | 0.0020 | 0.0000 | 12 |
植被覆盖度(X4) | 0.0176 | 0.0000 | 7 |
10年一遇10 min降雨(X5) | 0.5773 | 0.0000 | 1 |
20年一遇6 h降雨(X6) | 0.5341 | 0.0000 | 2 |
100年一遇6 h降雨(X7) | 0.5288 | 0.0000 | 3 |
100年一遇24 h降雨(X8) | 0.5103 | 0.0000 | 4 |
土壤类型(X9) | 0.1055 | 0.0000 | 8 |
土地利用类型(X10) | 0.0790 | 0.0000 | 10 |
GDP增速(X11) | 0.0687 | 0.0000 | 11 |
人口增速(X12) | 0.0938 | 0.0000 | 9 |
Fig.10 Spatial distribution of different rainfall and rainfall index图10 不同降雨指标空间分布图 |
Tab. 5 Interaction between rainfall indices表5 各降雨指标之间的交互作用 |
降雨因素交互指标 | q | 影响模式 |
---|---|---|
100_24 ∩ 100_6 | 0.5387 | 双线性增强 |
100_24 ∩ 20_6 | 0.5528 | 双线性增强 |
100_24 ∩ 10_10 | 0.6585 | 双线性增强 |
100_6 ∩ 20_6 | 0.5410 | 双线性增强 |
100_6 ∩ 10_10 | 0.640 | 双线性增强 |
20_6 ∩ 10_10 | 0.6337 | 双线性增强 |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
[
|
[3] |
[
|
[4] |
[
|
[5] |
[
|
[6] |
[
|
[7] |
[
|
[8] |
[
|
[9] |
[
|
[10] |
[
|
[11] |
[
|
[12] |
[
|
[13] |
[
|
[14] |
[
|
[15] |
[
|
[16] |
[
|
[17] |
[
|
[18] |
[
|
[19] |
[
|
[20] |
[
|
[21] |
[
|
[22] |
[
|
[23] |
[
|
[24] |
[
|
[25] |
[
|
[26] |
[
|
/
〈 | 〉 |