中国大城市的城市组成对城市热岛强度的影响研究
作者简介:王美雅(1991-),女,博士生,主要从事环境资源遥感应用研究。E-mail: 286097145@qq.com
收稿日期: 2018-05-30
网络出版日期: 2018-12-20
基金资助
国家重点研发计划专项课题(2016YFA0600302)
Analyzing the Influence of Urban Forms on Surface Urban Heat Islands Intensity in Chinese Mega Cities
Received date: 2018-05-30
Online published: 2018-12-20
Supported by
National Key Research and Development Project of China, No.2016YFA0600302.
Copyright
城市的快速扩张诱发并加剧了城市热岛效应,对人类健康和生存发展提出严峻挑战,因此,探索城市组成对城市热岛的影响具有重要意义。本研究在传统城市热岛影响因子的基础上,重点分析城市组成与城市热岛的关系。以13个中国大城市为研究区,利用2015年夏季(6-8月)白天和夜间的MODIS LST数据计算城市热岛强度,并结合土地覆盖数据、人口、区位和气象数据,分析热岛强度和城市地表组成、地表空间格局、人口和区位4类因子的关系。研究结果表明:中国的13个大城市均存在不同程度的热岛效应,城市白天的热岛效应比夜间显著。影响城市白天热岛强度的主要因子为城市建筑用地和林地面积比例、城市建筑用地和林地平均斑块面积、城市建筑用地聚集度和人口密度。城市建筑用地和林地平均斑块面积、城市建筑用地聚集度和林地斑块密度是夜间热岛强度的主要影响因子。城市建筑用地面积和乡村林地面积的增加会导致城市热岛情况的加剧,而通过调节城市地表空间格局(减少平均建筑用地斑块面积和降低建筑用地斑块聚集度)可以更好地降低城市地表温度,减缓城市热岛效应。
王美雅 , 徐涵秋 . 中国大城市的城市组成对城市热岛强度的影响研究[J]. 地球信息科学学报, 2018 , 20(12) : 1787 -1798 . DOI: 10.12082/dqxxkx.2018.180257
The rapid urban expansion has induced and aggravated the urban heat island phenomenon, which makes it a big challenge for human health and human survival environment. Research is needed to explore the impacts of urban form on the surface urban heat island. Taking 13 mega cities in China as the study area, this study mainly focuses on the relationship between urban forms and urban heat islands beside the traditional impact factors of surface urban heat islands. Using the MODIS land surface temperature products of the daytime and nighttime in summer 2015 (including June, July and August), along with the land cover, population, demographic and meteorological data of these 13 cities, the relationship between urban heat island and four factors, i.e. land covers composition, spatial configuration of land covers, population and location, were explored. Furthermore, the urban heat island intensity (UHII) index was employed to evaluate the urban heat island effect, which represents the mean LST difference between the urban region and the rural region. The results indicate that the urban heat island effect varies considerably among the 13 mega cities, showing a higher mean UHII in the daytime than that in the nighttime. The factors controlling annual mean daytime UHII are the area ratio of built-up area, the area ratio of forest, the mean patch area of built-up area, the mean patch area of forest, aggregation index of built-up area and population density. The nighttime UHII is significantly influenced by the mean patch area of built-up area, the mean patch area of forest, aggregation index of built-up area and the patch density of forest. Increasing the built-up area and the forest area will both increase UHII. Measures to mitigate the urban heat island include decreasing the built-up area or increasing green urban areas. Moreover, the urban heat island effect can be mitigated by altering the form of cities, such as, reducing the mean patch area of built-up area or reducing patch aggregation.
Key words: gega cities; UHII; urban forms; land surface temperature; land cover
Fig. 1 Location of the 13 mega cities selected in this study图1 研究选取13个大城市位置分布图 |
Fig. 2 Urban and rural areas of Harbin and Chengdu图2 哈尔滨和成都城乡像元选取示意 |
Tab. 1 landscape pattern indices表1 景观格局指数 |
景观指数 | 计算公式 | 值范围 | 生态涵义 |
---|---|---|---|
斑块数量PN | PN=n | (1,+∞) | 某类景观斑块总数 |
平均斑块面积PA | (0,+∞) | 表示斑块的平均面积 | |
最大斑块面积LPI | LPI=max(ai)/A×100 | [0,100] | 量化了某类景观的最大斑块占该类景观总面积的比例 |
斑块分形维度FD | [1,2] | 描述斑块形状的复杂性,值越接近1表示斑块形状越简单,值越接近2表示斑块形状越复杂 | |
形状指数SI | [1,+∞) | 描述斑块形状的复杂性,正方形的值为1,值越大表示斑块形状越复杂 | |
斑块连通度CI | [0,1] | 描述斑块间的连通性,值为0表示斑块为单个像元,值越大,表示斑块的连通性越好 | |
斑块密度PD | PD=n/A | (0,+∞) | 反映斑块破碎程度,值越大表示斑块越小,破碎化程度越高。 |
聚集度AI | AI=[gii/giimax]×100 | [0,100] | 反映斑块间的聚集程度,值越大表示斑块的聚集度越高 |
注:n为某类景观斑块总数;ai为该类景观中第i个斑块面积;为该类景观中最大斑块的面积;A为该类景观总面积;pi为第i个斑块的周长;cir为第i个斑块中第r个像元的连通度;v为3×3模板值之和;gii为该类景观斑块的像元中与同类相邻的像元数;giimax为该类景观斑块的像元中与同类相邻的最大邻接数 |
Tab. 2 The selected impact factors of UHI effect in the study表2 研究所选城市热岛影响因子 |
因子类别 | 因子 | 最终模型中 是否保留 |
---|---|---|
人口 | 人口数量/万人 | 是 |
人口密度/(人/km2) | 是 | |
区位 | 纬度 | 是 |
平均高程/m | 是 | |
年降水量/mm | 是 | |
年降水天数 | 否 | |
最热月份平均气温/℃ | 是 | |
平均日照时间/h | 否 | |
地表组成 | 农业用地面积比例/% | 是 |
林地面积比例/% | 是 | |
草地面积比例/% | 是 | |
水体面积比例/% | 是 | |
城市建筑用地面积比例/% | 是 | |
未利用地面积比例/% | 否 | |
城市面积/km2 | 否 | |
地表空间格局 | 城市建筑用地PN | 否 |
城市建筑用地PD(number per 100 ha) | 是 | |
城市建筑用地LPI/% | 否 | |
城市建筑用地mean PA /ha | 是 | |
城市建筑用地mean SI | 否 | |
城市建筑用地mean FD | 否 | |
城市建筑用地mean CI | 否 | |
城市建筑用地AI/% | 是 | |
林地PN | 是 | |
林地PD(number per 100 ha) | 是 | |
林地LPI/% | 否 | |
林地mean PA/ha | 是 | |
林地mean SI | 否 | |
林地mean FD | 是 | |
林地mean CI | 是 | |
林地AI/% | 否 |
Tab. 3 Correlations coefficients (r) among the selected impact factors of UHI effect表3 城市热岛影响因子间相关性检验结果 |
人口 | 相关性r | 常住人口 | 人口密度 | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
常住人口 | 1 | 0.249 | ||||||||||||||||||||||||
人口密度 | 1 | |||||||||||||||||||||||||
区位 | 相关性r | 纬度 | 平均高程 | 年降水量 | 年降水天数 | 最热月份平均气温 | 平均日照时间 | |||||||||||||||||||
纬度 | 1 | 0.114 | -0.585* | -0.509 | -0571 | 0.633* | ||||||||||||||||||||
平均高程 | 1 | -0.123 | 0.260 | -0.125 | -0.052 | |||||||||||||||||||||
年降水量 | 1 | 0.785** | 0.536 | -0.228 | ||||||||||||||||||||||
年降水天数 | 1 | 0.150 | -0.345 | |||||||||||||||||||||||
最热月份平均气温 | 1 | -0.489 | ||||||||||||||||||||||||
平均日照时间 | 1 | |||||||||||||||||||||||||
地表 组成 | 相关性r | 农业用地面积比例 | 林地面积比例 | 草地面积比例 | 水体面积比例 | 建筑用地面积比例 | 未利用地面积比例 | 城市面积 | ||||||||||||||||||
农业用地面积比例 | 1 | 0.576 | 0.578 | 0.524 | 0.536 | 0.893** | 0.917** | |||||||||||||||||||
林地面积比例 | 1 | 0.559 | 0.443 | 0.412 | 0.561 | 0.802** | ||||||||||||||||||||
草地面积比例 | 1 | 0.559 | 0.502 | 0.648* | 0.851** | |||||||||||||||||||||
水体面积比例 | 1 | 0.441 | 0.830** | 0.839** | ||||||||||||||||||||||
建筑用地面积比例 | 1 | 0.628* | 0.693* | |||||||||||||||||||||||
未利用地面积比例 | 1 | 0.889** | ||||||||||||||||||||||||
城市面积 | 1 | |||||||||||||||||||||||||
地表空间格局 | 相关性r | 建 PN | 建 PD | 建 LPI | 建 mean PA | 建 meanSI | 建 mean FD | 建 mean CI | 建 AI | 林 PN | 林 PD | 林 LPI | 林 mean PA | 林 mean SI | 林 mean FD | 林 mean CI | 林 AI | |||||||||
建PN | 1 | 0.374 | -0.655* | -0.747* | -0.615* | -0.435 | -0.580* | -0.684* | 0.334 | -0.478 | -0.205 | -0.023 | -0.625* | -0.782* | -0.679* | 0.005 | ||||||||||
建PD | 1 | 0.021 | -0.047 | 0.089 | 0.300 | 0.128 | 0.078 | -0.590* | -0.019 | -0.412 | -0.519 | -0.644* | -0.576* | -0.594* | -0.329 | |||||||||||
建LPI | 1 | 0.865** | 0.698* | 0.511 | 0.622* | 0.702* | -0.490 | 0.417 | 0.105 | -0.156 | 0.333 | 0.507 | 0.366 | -0.019 | ||||||||||||
建mean PA | 1 | 0.890** | 0.770** | 0.884** | 0.400 | -0.584* | 0.234 | 0.039 | -0.196 | 0.311 | 0.488 | 0.421 | -0.217 | |||||||||||||
建mean SI | 1 | 0.938** | 0.968** | 0.737* | -0.676* | 0.220 | -0.195 | -0.334 | 0.130 | 0.303 | 0.322 | -0.467 | ||||||||||||||
建mean FD | 1 | 0.959** | 0.723* | -0.700* | 0.098 | -0.255 | -0.403 | -0.064 | 0.074 | 0.131 | -0.554 | |||||||||||||||
建mean CI | 1 | 0.793** | -0.707* | 0.094 | -0.175 | -0.339 | 0.071 | 0.233 | 0.274 | -0.478 | ||||||||||||||||
建AI | 1 | -0.529 | 0.164 | 0.104 | -0.183 | 0.210 | 0.332 | 0.249 | -0.214 | |||||||||||||||||
林PN | 1 | -0.129 | 0.347 | 0.495 | 0.260 | 0.072 | -0.002 | 0.496 | ||||||||||||||||||
林PD | 1 | -0.388 | -0.507 | 0.023 | 0.305 | 0.036 | -0.309 | |||||||||||||||||||
林LPI | 1 | 0.929* | 0.756* | 0.480 | 0.627* | 0.821** | ||||||||||||||||||||
林mean PA | 1 | 0.707* | 0.382 | 0.595* | 0.793** | |||||||||||||||||||||
林 mean SI | 1 | 0.916** | 0.884** | 0.674** | ||||||||||||||||||||||
林mean FD | 1 | 0.450 | 0.480 | |||||||||||||||||||||||
林mean CI | 1 | 0.459 | ||||||||||||||||||||||||
林AI | 1 |
注:**代表显著性p<0.01,*代表显著性p<0.05。在地表空间格局组中,“建PN”代表城市建筑用地PN;“林PN”代表林地PN;其他因子同理。标示加粗的因子,表示该因子与其他因子具有强相关性,在本研究中被剔除 |
Fig. 3 Daytime and nighttime spatial variation in surface UHI effect for 13 mega cities in China图3 13个大城市白天和夜间热岛强度分布图 |
Fig. 4 R2 for UHII indicator in the daytime and nighttime for the three best regression models图4 白天和夜间热岛强度的前3种最优组合模型的拟合度R2 |
Fig. 5 Number of times the impact factors were included in the best regression models by time of day图5 热岛强度影响因子的正负向效应和出现频率对比图 |
Tab. 4 Correlations coefficients (r) of UHII and the selected impact factors表4 城市热岛影响因子与城市热岛强度(UHII)的相关性统计结果 |
因子类别 | 因子 | 与白天UHII相关性r | 与夜间UHII相关性r |
---|---|---|---|
人口 | 人口数量 | 0.052 | 0.215 |
人口密度 | 0.608* | 0.361 | |
区位 | 纬度 | 0.218 | 0.548 |
平均高程 | 0.171 | -0.250 | |
降水量 | -0.149 | -0.446 | |
最热月份平均气温 | -0.453 | -0.369 | |
地表组成 | 农业用地面积比例 | 0.098 | 0.027 |
林地面积比例 | 0.628* | 0.372 | |
草地面积比例 | 0.056 | 0.361 | |
水体面积比例 | -0.235 | -0.265 | |
城市建筑用地面积比例 | 0.752** | 0.502 | |
地表空间格局 | 城市建筑用地PD | -0.416 | 0.173 |
城市建筑用地mean PA | 0.663* | 0.578* | |
城市建筑用地 AI | 0.665* | 0.601* | |
林地PN | 0.546 | 0.507 | |
林地PD | 0.391 | 0.637* | |
林地mean PA | 0.611* | 0.617* | |
林地mean FD | 0.143 | -0.209 | |
林地mean CI | 0.123 | -0.166 |
注:**代表显著性p<0.01,*代表显著性p<0.05 |
The authors have declared that no competing interests exist.
[1] |
中国国家统计局.中国城市统计年鉴[M].北京:中国统计出版社,2014.
[ National Bureau of Statistics of China. China urban statistics yearbook[M]. Beijing: China Statistics Press, 2014. ]
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
[
|
[8] |
|
[9] |
[
|
[10] |
|
[11] |
[
|
[12] |
[
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
[
|
[20] |
[
|
[21] |
|
[22] |
|
[23] |
[
|
[24] |
[
|
[25] |
[
|
[26] |
|
[27] |
中国国务院.国务院关于调整城市规模划分标准的通知[EB/OL].2014.[2018-3-25]. .
[ China State Council. Notice of the state council on adjusting the scale of urban scale[EB/OL].2014.[2018-3-25]. ]
|
[28] |
|
[29] |
National Aeronautics and Space Administration. MODIS land surface temperature products and MOD13A3 NDVI products[DB/OL]. (2017-08-06)[2018-3-25].
|
[30] |
中国科学院资源环境科学数据中心.2015年中国土地利用现状遥感监测数据[DB/OL]. 2015.[2018-3-25]. .
[ Resource and environment data center of Chinese academy of sciences. Land use data in China in 2015[DB/OL]. 2015.[2018-3-25]. ]
|
[31] |
|
[32] |
University of Berkeley. Global administrative areas (boundaries)[DB/OL]. (2014-05-01)[2018-3-25]. .
|
[33] |
The United States Geological Survey. Global multi-resolution terrain elevation data2010 (GMTED 2010)[DB/OL]. (2010-09-01)[2018-3-25]. .
|
[34] |
Nationaloceanic and atmospheric administration. Historical atmospheric data[DB/OL]. (2018-3-25)[2018-3-25].
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
R Core Team. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria[EB/OL].2017.[2018-3-25].
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
[
|
[48] |
[
|
[49] |
[
|
[50] |
[
|
[51] |
[
|
[52] |
|
[53] |
[
|
/
〈 |
|
〉 |