遥感科学与应用技术

基于MODIS-NDVI的云南省植被覆盖度变化分析

  • 熊俊楠 , 1, 3 ,
  • 彭超 2 ,
  • 程维明 , 3, * ,
  • 李伟 1 ,
  • 刘志奇 4 ,
  • 范春捆 5 ,
  • 孙怀张 1
展开
  • 1. 西南石油大学土木工程与建筑学院,成都 610500
  • 2. 重庆欣荣土地房屋勘测技术研究所,重庆 400020
  • 3. 中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京 100101
  • 4. 四川省煤田测绘工程院,成都 610072
  • 5. 西藏自治区农牧科学院农业研究所,拉萨 850000
*通讯作者:程维明(1973-),男,研究员,主要从事数字地貌信息提取与制图研究。E-mail:

作者简介:熊俊楠(1981-),男,副教授,主要从事遥感地理信息系统理论与灾害风险分析方面的研究。E-mail:

收稿日期: 2018-08-09

  网络出版日期: 2018-12-20

基金资助

中国科学院战略性先导科技专项子课题 “关键节点气候变化相关环境问题和风险识别及应对方案”(XDA20030302);水科院全国山洪灾害调查评价项目(SHZH-IWHR-57);国家自然科学基金项目(51774250);西藏自治区科技支撑计划项目(省809);西南石油大学科技创新团队项目(2017CXTD09)

Analysis of Vegetation Coverage Change in Yunnan Province Based on MODIS-NDVI

  • XIONG Junnan , 1, 3 ,
  • PENG Chao 2 ,
  • CHENG Weiming , 3, * ,
  • LI Wei 1 ,
  • LIU Zhiqi 4 ,
  • FAN Chunkun 5 ,
  • SUN Huaizhang 1
Expand
  • 1. School of Civil Engineering and Architecture, SWPU, Chengdu 610500, China
  • 2. Chongqing Xinrong Land and Housing Survey Technology Institute, Chongqing 400020, China
  • 3. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
  • 4. Sichuan Provincial Coalfield Surveying and Mapping Engineering Institute, Chengdu 610072, China
  • 5. Agriculture Research Institute, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850000, China
*Corresponding author: CHENG Weiming E-mail:

Received date: 2018-08-09

  Online published: 2018-12-20

Supported by

Strategic Priority Research Program of Chinese Academy of Sciences, No.XDA20030302;IWHR (China Institute of Water Resources and Hydropower Research) National Mountain Flood Disaster Investigation Project, No.SHZH-IWHR-57;National Natural Science Foundation of China, No.51774250;The Tibet Autonomous Region Science And Technology Support Project, No.809;Southwest Petroleum University Of Science And Technology Innovation Team Projects, No.2017CXTD09.

Copyright

《地球信息科学学报》编辑部 所有

摘要

植被覆盖变化监测是区域资源环境承载力研究的基础,本文通过计算2001-2016年MODIS-NDVI植被指数,辅以趋势分析、变异系数等方法,估算了2001-2016年云南省植被覆盖度,进而探讨了植被覆盖度的时空变化特征及与地形因子之间的分布关系。结果表明:① 2001-2016年云南省植被覆盖度呈显著增加趋势,增速为4.992%/10 a。② 在空间上,植被覆盖度空间格局呈现由南向北、由西向东逐渐降低的特征,滇西、滇西南地区植被覆盖度最高,滇西北地区最低;植被覆盖度稳定性表现为由西南向东北方向波动性越来越大;滇东北地区植被覆盖度增加趋势明显优于其他区域,研究区内植被覆盖度变化趋势为增加、基本稳定和减少趋势的面积分别占49.53%、43.76%和6.71%。③ 植被覆盖度在2001-2006年、2006-2011年、2011-2016年3个时段的面积转移矩阵结果均表现为植被覆盖进化面积大于退化面积,二者的比值分别为1.42、1.63、2.01,植被覆盖情况呈持续改善趋势。④ 云南省植被覆盖度与地形因子之间的关系表现为,平均植被覆盖度随海拔增加呈先增加再减少、再增加、再减少趋势;随坡度的增加呈先增加再减少趋势;随坡向的变化呈由北向南逐渐减少趋势。

本文引用格式

熊俊楠 , 彭超 , 程维明 , 李伟 , 刘志奇 , 范春捆 , 孙怀张 . 基于MODIS-NDVI的云南省植被覆盖度变化分析[J]. 地球信息科学学报, 2018 , 20(12) : 1830 -1840 . DOI: 10.12082/dqxxkx.2018.180371

Abstract

The monitoring of vegetation cover change is the basis of regional resource and environmental bearing capacity research. This paper estimates the vegetation of Yunnan Province from 2001 to 2016 by calculating the MODIS-NDVI vegetation index from 2001 to 2016, supplemented by trend analysis, and coefficient of variation. Next, the spatial and temporal variation characteristics of vegetation coverage and its distribution relationship with topographic factors are discussed in depth. Results are shown as follows: ① From 2001 to 2016, the vegetation coverage in Yunnan shows a significant increase, with a growth rate of 4.992%/10 a.② Spatially, the spatial pattern of vegetation coverage appears to be gradually decreasing from the south to the north and from the west to the east. The vegetation coverage is highest in the west and southwestern Yunnan and the lowest in the northwestern Yunnan. The stability of the vegetation coverage is characterized by increasing volatility from southwest to northeast; the increase of vegetation coverage in northeastern Yunnan was significantly better than other areas. The study region of the vegetation coverage change trend which was increased, basically stable and decreased, accounting for 49.53%, 43.76% and 6.71%, respectively.③ The area transfer matrix results of vegetation coverage in the three periods from 2001-2006, 2006-2011, and 2011-2016 all showed that the vegetation cover evolution area was larger than the degraded area, and the ratios of the two were 1.42, 1.63, and 2.0. It indicates that the vegetation coverage shows a continuous improvement trend in the study area. ④ The relationship between vegetation coverage and topographic factors in Yunnan Province shows that the average vegetation coverage increases first, then decreases, then increases, and then decreases with the increase in altitude; it increases first and then decreases with increasing slope; Changes have gradually decreased from north to south.

1 引言

植被(Vegetation)是区域覆盖植物群落的总称,是生态系统的重要组成部分,具有截流降雨、减缓径流、防沙治沙、保持水土等功能[1]。植被覆盖度(Fractional Vegetation Cover,FVC)是植被的枝、茎、叶垂直向下的投影面积占统计区域总面积的百分比[2,3],是刻画地面植被覆盖的一个重要参数,广泛应用于监测不同尺度的地表植被覆盖情况[4]。植被覆盖度作为一个重要的基础数据,在植被动态监测及区域生态环境评价等领域具有重要的现实意义。近年来,众多学者在植被覆盖度遥感监测方面开展了大量的研究,在传统地面实测方法[5]的基础上形成了回归模型法[6]、植被指数法[7]、像元分解模型法[8]、决策树分类法[9]、人工神经网络法[10]等估算植被覆盖度方法。归一化植被指数(Normalized Difference Vegetation Index,NDVI)对植被的生物物理特征十分敏感,且在时效、尺度方面都具有明显优势,通常被用来进行区域尺度的植被分类和植被覆盖度研究[11,12],大量研究验证得出植被指数与植被覆盖度有较好的相关性,用它来计算植被覆盖度是合适的[13,14,15]
云南是亚洲的地理中心,是中国对西南开放的前沿和窗口,具有“东连黔桂通沿海,北经川渝进中原,南下越老达泰柬,西接缅甸连印巴”的独特区位,在当今国家对外开放“一带一路”重要战略中具有重要的地理优势,也是中国陆上连接东南亚和南亚的重要节点。因此,开展云南省近年来植被覆盖变化、生态环境监测等研究,查清云南省植被覆盖变化时空特征,对“一带一路”战略的顺利实施、区域社会经济发展等具有重要意义。云南省已有研究成果多从植被指数(NDVI)出发,分析在时间序列上的变化特征,如吴月圆等[16]、刘珊珊等[17]从年际、月际尺度进行分析。已有成果尚不能从时间和空间上系统、全面的解释云南省植被覆盖的动态变化,基于此,本文试图利用2001-2016年MODIS遥感数据,采用一元线性回归趋势分析模型、C.V.变异系数模型、转移矩阵分析模型等方法,分析云南省植被覆盖度的时空变化规律和特征,并进一步分析植被覆盖度分布与地形因子之间的关系。

2 数据源与研究方法

2.1 研究区概况

云南省地处中国西南边陲,地理位置为21°8′32″~29°15′8″ N和97°31′39″~106°11′47″ E。全省东西最大横距864.9 km,南北最大纵距990 km,总面积39.4万km2,占全国总面积的4.1 %。东与广西壮族自治区和贵州省毗邻,北以金沙江为界与四川省隔江相望,西北与西藏自治区相连,西部与缅甸唇齿相依,南部和东南部分别与老挝、越南接壤,共有陆地边境线4061 km(图1)。云南气候类型丰富多样,立体气候特点显著,类型众多、年温差小、日温差大、干湿季节分明、气温随地势高低垂直变化异常明显。全省平均气温,最热(7月)月均温在19~22 °C之间,最冷(1月)月均温在6~8 °C以上,年温差在10~12 °C之间。降水在季节上和地域上的分配极不均匀。湿季(雨季)为5-10月,集中了85 %的降雨量;干季(旱季)为11月至次年4月,降水量只占全年的15 %。全省降水的地域分布差异大,最多的地方年降水量可达2200~2700 mm,最少的仅有584 mm,大部分地区年降水量在1000 mm以上。云南植被种类众多,被誉为“植物王国”。
Fig. 1 Location of the study area and the area division

图1 研究区位置及区域划分

云南省下辖16个州市,本文在王金亮等[18]关于云南省区域划分结果基础上局部调整为7个区域(滇东北、滇东南、滇南、滇西南、滇西、滇西北、滇中)。

2.2 数据源及预处理

遥感影像数据来源于美国国家航空航天局(National Aeronautics and Space Administration,NASA)的戈达德航天中心LAADS DAAC(https://ladsweb.modaps.eosdis.nasa.gov/)[19,20]。MODIS植被指数产品MOD13Q1空间分辨率为250 m,时间分辨率为16 d,2001年1月至2016年12月共有368期影像。由于年最大NDVI可较好地反映该年度植被长势最好季节的植被覆盖情况,尽可能规避大气、云层、太阳高度角等因素造成的数据在短时间的偏低情况,最大限度保障数据质量,因此采用最大值合成法(Maximum Value Composite, MVC)将年度最大NDVI用于分析云南省植被覆盖度在时间和空间上的变化规律和特征。
MOD13Q1属于MODIS三级数据产品,为定标、畸形校正后数据,在此基础上,通过MODIS Reprojection Tool(MRT)工具进一步进行波段提取、镶嵌、投影转换等处理。处理后数据格式由HDF转换为TIFF格式,投影转换为Albert等面积割圆锥投影。基于ArcGIS工具根据研究区行政边界做裁剪处理。

2.3 研究方法

2.3.1 植被覆盖度估算模型
随着遥感技术的发展,基于遥感可实现植被覆盖度大范围长时间序列动态变化监测,进而形成了多种植被覆盖度估算方法[21]。本文选用像元二分模型基于归一化植被指数(NDVI)完成云南省植被覆盖度估算。像元二分模型[22]的主要思想为:假设像元信息由植被 S v 和非植被 S s 组成,其中植被所占比例即为该像元的植被覆盖度(用 F c 表示),与之对应的非植被比例为 1 - F c ,进而可推出植被覆盖度模型,即
F c = S - S s S v - S s (1)
式中: F c 表示植被覆盖度; S 表示混合像元遥感信息; S v 表示纯植被覆盖时遥感信息; S s 表示纯非植被覆盖时遥感信息。
基于NDVI与植被覆盖度之间的可靠相关性,结合李苗苗等[23]的研究,建立基于NDVI的植被覆盖度估算模型:
F c = NDVI - NDV I min NDV I max - NDV I min (2)
式中: F c 表示植被覆盖度; NDVI 表示混合像元的NDVI值; NDV I max 为纯植被像元的最大NDVI值,理论上接近于1; NDV I min 为纯非植被像元的最小NDVI值,理论上接近于0。然而由于受气象、植被类型及分布、季节等因素的影响,不同影像的 NDV I max NDV I min 均存在一定的差异。
通过上述模型,分别采用1%、99%置信度(单期数据中NDVI值对应像元数量的累计百分比),选取每期NDVI数据的最大最小阈值,由式(2)完成云南省多年多时间尺度植被覆盖度估算。
2.3.2 一元线性回归模型
云南省植被覆盖度变化旨在分析自变量植被覆盖度随时间变量变化的关系,经检验二者的关系可近似用一条直线表示,满足一元线性回归模型的条件,同时一元线性回归可以在空间上模拟每个栅格的变化趋势,以单个像元植被覆盖度随时间变化特征反映整个空间的变化规律。其计算公式如下:
Slope = n × i = 1 n i × f i - i = 1 n i i = 1 n f i n × i = 1 n i 2 - i = 1 n i 2 (3)
式中: n 为总的监测年数; f i 为第 i 年植被覆盖度; Slope 为多年植被覆盖度线性拟合斜率。拟合直线反映云南省多年植被覆盖度变化趋势,斜率为正,表明植被覆盖度增加,反之则表示减少;拟合斜率绝对值越大,表示变化越明显[24]
2.3.3 变异系数模型
C.V.变异系数[24]是用来衡量一组观测数中各观测量变异程度的统计量,本文用该模型基于像元尺度对植被覆盖度在时间序列上的变异程度做统计分析,评估植被覆盖度随时间变化的稳定性,计算公式如下:
C . V . = σ x ̅ (4)
式中: C . V . 表示变异系数; σ 表示植被覆盖度的标准差; x ̅ 表示植被覆盖度的平均值。
C.V.值的大小反映了数据分布的离散性、波动性。C.V.变异系数值越大,表明数据分布越离散,波动性越大,变化越剧烈;反之则表明数据分布越集中,波动性小,变化趋于稳定。

3 云南省植被覆盖度变化特征

参阅众多研究植被覆盖度等级的划分[25,26,27],结合研究区实际情况将等间距划分为5类:低植被覆盖度(0~20%)、中低植被覆盖度(20%~40%)、中植被覆盖度(40%~60%)、中高植被覆盖度(60%~80%)、高植被覆盖度(80%~100%)。

3.1 植被覆盖随时间变化特征

图2表1所示,以年为时间尺度,区域划分为空间尺度,基于平均植被覆盖度进行分析。结果表明,2001-2016年云南省平均植被覆盖度呈显著增加趋势(P<0.001),增速为4.992%/10a,仅在2002年和2007年出现较大的波动减少。2002年植被覆盖度值为65.30%,为近16年来最低值,最高值为2016年的73.50%。2001年全区植被覆盖度为66.52%,2016年上升至73.50%,增长率为10.49%。对比不同区域可知,滇东北地区增长最为明显,增长了18.36%,其次是滇东南地区为18.02%。滇西地区增长率最低,仅有8.09%,这主要与其本身植被覆盖度基数较高有关。
Fig. 2 Temporal variation of average vegetation coverage from 2001 to 2016

图2 2001-2016年平均植被覆盖度随时间变化趋势

Tab. 1 Statistical characteristics of vegetation coverage changes in Yunnan (Some years)

表1 云南地区植被覆盖度变化统计特征(部分年份)

区域 年份 平均值 标准差 增长率/%
2001 2004 2007 2010 2013 2016
滇东北 60.72 62.54 64.77 67.89 70.16 71.87 65.32 4.28 18.36
滇东南 64.20 64.87 67.87 68.05 72.60 75.77 69.09 3.80 18.02
滇南 65.40 66.05 65.82 67.61 71.01 72.27 68.32 2.62 10.50
滇西 69.53 70.06 69.50 71.62 73.20 75.15 71.43 1.71 8.09
滇西北 59.76 60.72 62.14 63.39 65.25 64.89 62.60 1.63 8.57
滇西南 75.13 75.39 73.34 77.84 79.34 81.40 77.44 2.50 8.34
滇中 62.32 62.95 61.59 63.00 64.75 67.61 63.68 1.98 8.49
全区 66.52 67.25 67.13 69.52 71.63 73.50 69.22 2.36 10.49

3.2 植被覆盖度空间变化特征

3.2.1 空间分布特征
从2001-2016年平均植被覆盖度的空间分布可以看出(图3(a)),云南省植被覆盖度总体呈由南向北、由西向东逐渐减少的特征。区域植被覆盖度分布存在分区特征,滇南、滇西、滇西南以及滇东南地区比滇西北、滇东北、滇中地区植被覆盖度更高。其中,滇西北地区为青藏高原南延部分,植被覆盖度低与海拔较高,气候条件不适宜有关;滇东北、滇中地区为云贵高原的组成部分,平均海拔2000 m左右,多为起伏和缓的低山和浑圆丘陵,比较适合农作物的种植,同时此地区也是云南省几大重要城市坐落区,以及分布着滇池、抚仙湖、杞麓湖等湖泊,大大降低了该区域整体植被覆盖度。
Fig. 3 Spatial distribution of vegetation coverage in Yunnan Province

图3 云南省植被覆盖度空间分布

云南省植被覆盖度呈现“单峰”分布(图3b),低植被覆盖度地区占总面积的1.50%,主要分布为湖泊及其边缘地区,城市坐落地及其辐射地区,滇西北地区的北部高原地区;中低植被覆盖度地区占总面积的2.60%,主要分布为湖泊边缘地区,城市辐射地区,以及其他零星地区;中植被覆盖度地区占总面积的14.61%,主要分布在滇东北中部、滇东南西部、滇南北部、滇西东部、滇西北东南部、滇中地区;中高植被覆盖度地区占总面积的60.00%,广泛分布在各个区域;高植被覆盖度地区占总面积的21.29%,主要分布在滇西西部、滇西南西部和南部地区。
云南省各个区域与全区多年平均植被覆盖度大小对比(图3(c)),全区多年平均植被覆盖度为69.22%,滇西南、滇西地区高于全区,分别为77.44%、71.43%;滇东南、滇南地区略低于全区,分别为69.09%、68.32%;滇东北、滇西北、滇中地区低于全区,分别为65.32%、62.60%、63.68%,其中滇西北地区最低。
3.2.2 植被覆盖度的趋势分析
基于一元线性回归模型,在像元尺度上分析了云南省2001-2016年植被覆盖度变化趋势,各地区存在不同程度的或正或负的变化趋势(图4),正值表示呈增长趋势,负值表示呈减少趋势。根据变化趋势大小划分为5个等级:明显减少(Slope≤-0.015)、轻度减少(-0.015<Slope≤-0.005)、基本稳定(-0.005<Slope≤0.005)、轻度增加(0.005<Slope≤0.015)、明显增加(Slope>0.015)。由表2可知,植被覆盖度呈增长趋势的面积占49.53%,其中明显增加面积占7.95%,主要分布在滇东北中部以及滇东南西部地区,轻度增加广泛分布在研究区各个区域,又以滇东北分布最广;植被覆盖度呈减少趋势的面积占6.71%,主要体现在滇中和滇东北地区,分析发现,这一区域分布有云南省几大重要城市,以及滇池等大型内陆湖泊的分布,大城市的发展导致周边植被减少,植被覆盖度降低,湖泊本身亦是植被覆盖度分布较低区域。总体而言,16年来云南省植被覆盖度变化趋势为:东部强于西部,南部强于北部。
Fig. 4 Trend of vegetation coverage in Yunnan Province from 2001 to 2016

图4 云南省2001-2016年植被覆盖度变化趋势

Tab. 2 Area and ratio of vegetation coverage change in Yunnan Province

表2 云南省植被覆盖度变化面积及比例

变化趋势等级 面积/km2 面积比例/%
明显减少 4727.5625 1.23
轻度减少 20 986.4375 5.48
基本稳定 16 7670.9375 43.76
轻度增加 15 9351.8750 41.58
明显增加 30 467.7500 7.95
3.2.3 植被覆盖度的稳定性
云南省2001-2016年植被覆盖度的C.V.变异系数介于0.012~3.872之间,整体表现为中部和东部地区变化最剧烈,西北和北部地区次之,西部和南部变化最小。具体而言,植被覆盖度变化最明显的地区主要分布在滇中、滇东北中部和南部、滇东南西部、滇南北部以及滇西北北部(图5)。分析其原因发现:① 湖泊所在地变化剧烈与其本身植被覆盖度低或数值为零相关,导致变异系数计算结果反而异常偏高,其结果并不能得出湖泊区域植被覆盖度波动性大的结论,相反湖泊区域植被覆盖度呈稳定状态或不变;② 滇中地区除湖泊区域,波动性较大区域主要为城市坐落地区,城市的发展导致了植被分布的巨大变化,进而反映为植被覆盖度的波动性较大;③ 滇西北北部地区为青藏高原南延部分,海拔较高,植被生长受气候变化较大,故随着不同气候的变化呈现波动性较大。变化较小的地区主要为研究区滇西、滇西南和滇南南部地区,其原因是这些地区植被覆盖度基数本身较大,植被覆盖度较高且年际变化不大。
Fig. 5 Stability of vegetation coverage change in Yunnan Province from 2001 to 2016

图5 云南省2001-2016年植被覆盖度变化稳定性

3.2.4 植被覆盖的空间转移矩阵分析
植被覆盖度在时间序列上或受人类活动影响,或受气候、灾害等自然因素的影响,在空间格局上发生变化,不同植被覆盖度等级之间发生相互转换,基于ArcGIS空间分析模块的转移矩阵模型分析云南省2001-2016年不同时段植被覆盖空间转移情况,以此分析不同植被覆盖度等级之间的相互转换关系。表3所示为2001-2006年、2006-2011年、2011-2016年3个时段不同植被覆盖度等级转移矩阵结果。
Tab. 3 The transfer matrix of the coverage degree of vegetation coverage in Yunnan Province from 2001 to 2016

表3 2001-2016年云南省各植被覆盖度等级面积的转移矩阵

时段 FVC等级 低/% 中低/% 中/% 中高/% 高/% 总计/%
2001-2006 1.36 0.41 0.15 0.05 0.02 1.98
中低 0.45 1.56 1.33 0.30 0.07 3.72
0.20 2.17 9.71 5.59 0.94 18.61
中高 0.06 0.69 9.66 33.20 9.43 53.04
0.02 0.13 1.37 11.25 9.88 22.65
总计 2.08 4.96 22.22 50.40 20.34 100.00
2006-2011 1.35 0.42 0.23 0.08 0.02 2.10
中低 0.43 1.34 1.47 0.44 0.07 3.75
0.15 1.48 7.78 5.26 0.67 15.34
中高 0.04 0.40 7.80 32.03 7.92 48.19
0.01 0.08 1.33 15.22 13.97 30.63
总计 1.98 3.72 18.61 53.04 22.65 100.00
2011-2016 1.27 0.33 0.17 0.07 0.02 1.86
中低 0.48 0.88 0.75 0.26 0.06 2.43
0.26 1.68 4.79 3.14 0.58 10.45
中高 0.07 0.75 8.29 28.38 9.22 46.71
0.02 0.11 1.33 16.33 20.75 38.55
总计 2.10 3.75 15.34 48.19 30.63 100.00

注: 表示植被覆盖度等级没有发生变化的面积和比例

定义低植被覆盖度(0~20%)→中低植被覆盖度(20%~40%)→中植被覆盖度(40%~60%)→中高植被覆盖度(60%~80%)→高植被覆盖度(80%~100%)转化顺序为植被进化演变过程,定义相反的顺序为植被退化演变过程。
2001-2006年转移矩阵结果显示,植被覆盖度呈进化趋势面积占总面积25.09%,退化趋势面积占总面积的18.30%,前者是后者的1.42倍;2006-2011年植被覆盖度呈进化趋势面积占总面积26.95%,退化趋势面积占总面积的16.58%,前者是后者的1.63倍;2011-2016年植被覆盖度呈进化趋势面积占总面积的29.32%,退化趋势面积占总面积的14.60%,前者是后者的2.01倍。表现为随时间的进程,进化趋势面积与退化趋势面积的比例越来越大,研究区总体植被覆盖情况呈现改善趋势。对比3个时段植被覆盖度等级之间的变化,2006-2011年较另外 2个时段不同,表现为低、中低植被覆盖度的面积有所增加,中、中高植被覆盖度的面积减少,高植被覆盖度增加;另外2个时段表现为较低等级植被覆盖度减少,较高等级植被覆盖度增加。

4 云南省植被覆盖度变化与不同地理要素的关系

相关研究表明,地形因子在一定程度上影响植被覆盖的空间分布。因此,为了更加全面地分析云南省植被覆盖的时空分布及变化特征,分别对不同海拔、坡度、坡向植被覆盖度的变化特征进行分析。

4.1 不同海拔植被覆盖度的变化

云南省地势呈西北向东南逐渐降低趋势,地势的高低结合人类活动将影响植被覆盖情况。如图6(a)所示,随着海拔的不断增加,平均植被覆盖度总体呈减少趋势。具体来说,随着海拔的增加平均植被覆盖度呈先增大再减少、再增大、再减少的变化趋势。① 海拔<1000 m时,随着海拔的增加平均植被覆盖度亦增大,主要因为此海拔范围多为河谷低洼处,人类活动较为活跃,随着海拔的增加人类活动呈减弱趋势。② 海拔在1000~2000 m时,随着海拔的增加平均植被覆盖度呈减少趋势;海拔在2000~3000 m时,随着海拔的增加平均植被覆盖度又呈增长趋势。结合两段高程范围内的变化趋势分析发现,平均植被覆盖度最低(海拔在2000 m左右)时,主要分布在云南省滇中和滇东北南部地区,这一地区为云贵高原的组成部分,平均海拔2000 m左右,表现为起伏和缓的低山和浑圆丘陵,这一地形适宜农作物的发展,是人类活动剧烈区域,植被覆盖度受影响相对较高。③ 海拔>3000 m,随着海拔的增加平均植被覆盖度逐渐减少,且在海拔>4000 m后,急剧减少,由此可得3000 m是植被覆盖度减少的第一个节点,4000 m是减少的第二个节点。由云南省地形可知>4000 m处于滇西北地区,为青藏高原南延部分,海拔高、地势险,植被生长受限,覆盖情况不佳。如图6(b)所示,不同海拔平均植被覆盖度2001-2016年均呈不同波动程度的增长趋势。
Fig. 6 Distribution and change characteristics of average vegetation coverage at different altitudes in Yunnan Province from 2001 to 2016

图6 2001-2016年云南省不同海拔平均植被覆盖度分布规律及变化特征

4.2 不同坡度植被覆盖度的变化

云南省因地形地貌复杂,坡度变化较大,滇西北地区为青藏高原南延部分坡度最大,向南逐渐减少,滇中及滇东北南部、滇东南北部地区为云贵高原部分,为起伏和缓的低山和浑圆丘陵,坡度相对最低。植被覆盖随坡度变化明显,如图7(a)所示,随着坡度的增加,平均植被覆盖度总体呈增加趋势。具体来说,随着坡度的增加平均植被覆盖度呈先增加再减少趋势。① 坡度<20°,随着坡度的增加平均植被覆盖度亦增加。分析可知,低坡度区为人类活动较为剧烈的区域,随着坡度的增加人类活动干预越小,平均植被覆盖度呈显著上升。② 坡度>20°,随着坡度的增加平均植被覆盖度逐渐减少。分析可知,坡度在20°以后受人类活动的影响较小,主要受到自然因素的影响,坡度的不断增大,植被的生长越受限,进而植被覆盖情况越差。如图7(b)所示,不同坡度平均植被覆盖度2001-2016年均呈增长趋势,说明不同坡度的植被覆盖情况均保持良好的改善趋势。
Fig. 7 Distribution and change characteristics of average vegetation coverage at different slopes in Yunnan Province from 2001 to 2016

图7 2001-2016年云南省不同坡度平均植被覆盖度分布规律及变化特征

4.3 不同坡向植被覆盖度的变化

研究发现,云南省平地部分多为湖泊分布区域,植被覆盖度较低,2001-2016年平均植被覆盖度在3.99%~9.60%之间,因此后续分析排除平地的影响。如图8(a)所示,平均植被覆盖度在各坡向的差异较小,最大相差2.85%,说明坡向对植被的影响不显著。具体来说,平均植被覆盖度的大小在方向上存在一定的规律,表现为北高南低,呈由向北逐渐向南方向转变时,平均植被覆盖度逐渐减少。图8(b)中不同坡向平均植被覆盖度2001-2016年均呈增长趋势,说明不同坡向的植被覆盖情况和不同坡度植被覆盖情况一致,均保持良好的改善趋势。
Fig. 8 Distribution and change characteristics of average vegetation coverage at different slope directions in Yunnan Province from 2001 to 2016

图8 2001-2016年云南省不同坡向平均植被覆盖度的分布规律及变化特征

5 结论与讨论

5.1 结论

利用MODIS-NDVI数据估算植被覆盖度,辅以趋势分析、变异系数等方法,分析了云南省植被覆盖度时空变化特征及其与地形因子的关系。本文主要得出以下结论:
(1)时间上,云南省植被覆盖度2001-2016年呈显著(P<0.001)增加趋势,增速为4.992%/10a,仅在2002年和2007年出现较大波动的减少。
(2)空间上,植被覆盖度格局呈由南向北、有西向东逐渐降低的分布特征,滇西、滇西南地区植被覆盖度最高,植被长势最好;滇南、滇东南次之,植被长势较好;滇西北、滇东北、滇中地区植被覆盖度较低,滇西北地区最低。
(3)云南省植被覆盖度稳定性总体表现为中部和东部地区变化最剧烈,西北和北部地区次之,西部和南部变化最小。
(4)云南省植被覆盖度总体表现为上升趋势,呈增加、基本稳定和减少趋势的面积分别占49.53%、43.76%和6.71%,明显增加区域分布在滇东北中部以及滇东南西部地区。
(5)云南省2001-2006年、2006-2011年、2011-2016年3个时段植被覆盖度的面积转移矩阵分析结果均表现为植被覆盖进化面积大于退化面积,二者的比值分别为1.42、1.63、2.01,越来越大的比值反映了研究区植被覆盖情况呈持续改善趋势。
(6)云南省植被覆盖度变化与地形之间存在明显规律。随海拔的增加平均植被覆盖度呈先增大再减少、再增大、再减少的变化趋势;随坡度的增加平均植被覆盖度呈先增加再减少趋势,坡度20°为分界点;随坡向的变化平均植被覆盖度呈由北向南逐渐减少趋势。

5.2 讨论

本文基于像元尺度对云南省植被覆盖度进行动态监测与分析,采用多种时空分析方法分析了云南省植被的时空变化特征,并结合地形因子分析了随着地形变化植被覆盖度的空间变化。研究表明,云南省植被覆盖度总体呈逐年上升趋势。变异系数分析结果表明自西南至东北地区,植被覆盖度年际波动性逐渐增大,趋势分析结果表现为西南至东北地区变化趋势逐渐增大。地形因子与植被覆盖度之间的关系分析再现了二者之间密切的关系。本文定位在植被覆盖度时空分布规律分析,旨在通过遥感数据反演云南省2001-2016年植被覆盖度,通过多种模型方法再现变化规律。众所周知,植被生长与生态环境之间有着密切的关系,掌握植被覆盖度的变化规律特征,对于如何开展生态环境保护等工作具有重要的意义,如何呈现二者之间的关系是生态环境研究的下一步工作;其次,本文尚未对引起植被覆盖度变化的原因进行分析,而影响植被覆盖度变化的因素大体可分为2个方面(自然因素和人为因素),定量分析影响植被覆盖度变化的驱动力因素,对比不同因素之间的影响力大小,找到主要的影响因素,针对主要影响因素采取有效措施保障植被保持高植被覆盖以及向高植被覆盖方向发展,这将是下一步研究的重点内容。

The authors have declared that no competing interests exist.

[1]
赵英时. 遥感应用分析原理与方法[M].北京:科学出版社,2013.

[ Zhao Y S.Principles and methods of analysis of remote sensing applications[J]. Beijing: Science Press, 2013. ]

[2]
Gitelson A A, Kaufman Y J, Stark R, et al.Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment, 2002,80(1):76-87.Spectral properties of a wheat canopy with vegetation fraction (VF) from 0% to 100% in visible and near-infrared (NIR) ranges of the spectrum were studied in order to devise a technique for remote estimation of VF. When VF was <60%, from emergence till middle of the elongation stage, four distinct, and quite independent, spectral bands of reflectance existed in the visible range of the spectrum: 400 to 500 nm, 530 to 600 nm, near 670 nm, and around 700 nm. When VF was between 60% and 100%, reflectance in the NIR leveled off or even decreases with an increase of VF. The decreased reflectance in the NIR, occurring at or near the midseason, can be a limiting factor in the use of that spectral region for VF estimation. It was found that for VF>60%, the information content of reflectance spectra in visible range can be expressed by only two independent pairs of spectral bands: (1) the blue from 400 to 500 nm and the red near 670 nm; (2) the green around 550 nm and the red edge region near 700 nm. We propose using only the visible range of the spectrum to quantitatively estimate VF. The green (as well as a 700-nm band) and the red (near 670 nm) reflectances were used in developing new indices, which were linearly proportional to wheat VF ranging from 0% to 100%. The Atmospherically Resistant Vegetation Index (ARVI) concept was used to correct indices for atmospheric effects. Visible Atmospherically Resistant Index in the form VARI=( R green R red)/( R green+ R red R blue) was found to be minimally sensitive to atmospheric effects allowing estimation of VF with an error of <10% in a wide range of atmospheric optical thickness. Validation of the newly suggested technique was carried out using wheat independent data sets and reflectance data obtained for cornfields in Nebraska. Predicted green VF was compared with retrieved from digital images. Despite the fact that the reflectance contrast among the visible channels is much smaller than between the visible and NIR, the sensitivity of suggested indices to moderate to high values of VF is much higher than for the Normalized Difference Vegetation Index (NDVI), and the error in VF prediction did not exceed 10%. Suggested indices will complement the widely used NDVI, ARVI, Soil Adjusted Vegetation Index (SAVI) and others, which are based on the red and the NIR bands in VF estimation, and also Green Atmospherically Resistant Index (GARI), which is based on the green and the NIR bands.

DOI

[3]
章文波,符素华,刘宝元.目估法测量植被覆盖度的精度分析[J].北京师范大学学报(自然科学版),2001,37(3):402-408.利用自行设计的野外垂直照相装置 ,选择北京密云、怀柔的 2个样地对植被覆盖度进行动态监测 ,分析目估测量植被覆盖度的精度 .结果表明 :个人的目估覆盖度值很不可靠 ,不同人对同一块样点的目估结果存在显著差别 ,个人目估最大绝对误差可达到 4 0 % ;目估误差大小与目估对象的实际覆盖度大小有关 ,当实际覆盖度很大或很小时 ,目估绝对误差相对较小 ,反之则较大 ;随着参与目估人数的增加 ,多人目估均值的绝对误差相对个人目估明显有所减小 ,但这种误差减少程度的变化趋势却比较缓慢 ,2 0人目估均值的绝对误差仍可达到 10 %以上 ,目估结果一般不宜用于植被覆盖动态变化的模拟分析计算

DOI

[ Zhang W B, Fu S H, Liu B Y.Error assessment of visual estimation plant coverage[J]. Journal Beijing Normal University(Natural Science), 2001,37(3):402-408. ]

[4]
朱高龙,柳艺博,居为民,等. 4种常用植被指数的地形效应评估[J].遥感学报,2013,17(1):210-234.植被指数已经广泛应用于地表植被覆盖监测,但是地形对植被指数的影响难以避免,却经常在大尺度遥感应用时被忽略。本文利用山区森林的Landsat TM数据计算SR、NDVI、RSR、MNDVI 4种常用植被指数,评估了地形对这些植被指数的影响,并利用余弦校正和C校正模型分别对它们进行地形校正。结果表明,近红外和短波红外比红光波段的地形影响更为敏感,原因是更强的红光天空漫反射削弱了红光的地形影响。地形强烈影响非波段比值型植被指数(如RSR和MNDVI等),导致阳坡的植被指数相对偏小,阴坡的植被指数相对偏大,这种地形效应随坡度增大而显著增大。因此,利用非波段比值型植被指数反演山区植被参数时必须做严格的地形校正。与之相反,波段比值型植被指数(如SR和NDVI等)可以很大程度上消除地形影响,但是在大坡度情况下,地形影响仍然不能被忽略,而且此时SR比NDVI的地形效应更大。C地形校正效果好于余弦校正效果,特别是大坡度情况下更为明显。

DOI

[ Zhu G L, Liu Y B, Ju W M, et al.Evaluation of topographic effects on four commonly used vegetation indices[J]. Journal of Remote Sensing, 2013,17(1):210-234. ]

[5]
White M A, Asner G P, Nemani R R, et al.Measuring fractional cover and leaf area index in arid ecosystems: Digital camera, radiation transmittance, and laser altimetry methods[J]. Remote Sensing of Environment, 2000,74(1):45-57.

DOI

[6]
蔡宗磊,包妮沙,刘善军.国产高分一号数据估算草地植被覆盖度方法研究——以呼伦贝尔草原露天煤矿区为例[J].地理与地理信息科学,2017,33(2):32-38.

[ Cai Z L, Bao N S, Liu S J.Estimation method of fractional vegetation coverage for grassland based on Chinese GF-1 satellite image:taking Hulun Buir prairie open-pit coal mine as an example[J]. Geography and Geo-information Science, 2017,33(2):32-38. ]

[7]
杨胜天,刘昌明,杨志峰,等.南水北调西线调水工程区的自然生态环境评价[J].地理学报,2002,57(1):11-18.

[ Yang S T, Liu C M, Yang Z F, et al.Natural eco-environmental evaluation of west route area of interbasin water transfer project[J]. Acta Geographica Sinica, 2002,57(1):11-18. ]

[8]
彭飞,范闻捷,徐希孺,等. 2000-2014年呼伦贝尔草原植被覆盖度时空变化分析[J].北京大学学报:自然科学版,2017,53(3):563-572.以呼伦贝尔草原核心区的新巴尔虎右旗、新巴尔虎左旗、陈巴尔虎旗和鄂温克族自治旗为主要研究区,基于MODISNDVI数据,利用像元二分模型反演得到植被覆盖度,并结合土地覆盖分类产品,构建2000—2014年研究区植被覆盖度时间序列。通过时间序列分析,从不同的时间和空间尺度分析草原植被覆盖度的变化规律;同时引入覆盖度异常变化点检测算法,并结合该地区同期气象数据,进一步探讨研究区植被覆盖度变化与气象因子之间的内在驱动力关系。结果表明,植被覆盖度在空间分布上主要表现为:从东往西依次递减,特别是研究区西南部,覆盖度最低;15年来研究区植被年际变化总体上呈现前10年下降、后5年缓慢上升的趋势。对植被覆盖度的异常变化进行分析,结果显示:返青期和枯萎期覆盖度的剧烈变化与温度的相关性较大,生长旺季内(7—8)月覆盖度的剧烈变化主要与降水量有关。

DOI

[ Peng F, Fan W J, Xu X R, et al.Analysis on temporal-spatial change of vegetation coverage in Hulunbuir Steppe (2000-2014)[J]. Journal of Peking University: Natural Science Edition, 2017,53(3):563-572. ]

[9]
雷璇,杨波,蒋卫国,等.东洞庭湿地植被格局变化及其影响因素[J].地理研究,2012,31(3):461-470.

[ Lei X, Yang B, Jiang W G, et al.Vegetation pattern changes and their influencing factors in the East Dongting Lake wetland[J]. Geographical research, 2012,31(3):461-470. ]

[10]
陈涛,牛瑞卿,李平湘,等.基于人工神经网络的植被覆盖遥感反演方法研究[J].遥感技术与应用,2010,25(1):24-30.lt;p>使用新型遥感数据&mdash;&ldquo;北京一号&rdquo;小卫星数据,采用BP神经网络法对密云水库流域内的植被覆盖进行反演,并将结果与传统回归分析法和NDVI像元二分法进行比较。结果表明:在山区植被信息遥感反演算法中,神经网络方法以其对非线性过程的精确模拟而具有比传统算法更高的精度,尤其对于遥感反演算法难度较大的山区植被覆盖信息提取效果较好。<br /></p>

[ Chen T, Niu R Q, Li P X, et al.An artificial neural network method for vegetation cover retrieval with “Beijing-1” microsatellite data[J]. Remote Sensing Technology and Application, 2010,25(1):24-30. ]

[11]
吴云,曾源,赵炎,等.基于MODIS数据的海河流域植被覆盖度估算及动态变化分析[J].资源科学,2010,32(7):1417-1424.本文以MODIS-NDVI时间序列数据为基础,利用像元二分模型对海河流域2000年-2007年的植被覆盖度(f<sub>c</sub>)进行了估算,分析了年最大植被覆盖度的时空变化特征,并对植被覆盖度与降雨量之间的响应关系进行了深入探讨。结果表明:①海河流域2000年-2007年平原农业区植被覆盖度整体较高,f<sub>c</sub>介于60%~80%之间;永定河上游区域植被覆盖度较低,f<sub>c</sub>小于30%;②近8年来海河流域植被覆盖度整体呈增加趋势,只有东南部的部分农田及城市扩展区,植被覆盖度有所减少;③海河流域植被覆盖度与当年3至8月的降水总量相关性最高,相关系数为0.687,该时段内的降雨量与植被覆盖度年际变化总体趋势较为相似,在绝大多数年份,两者的增减具有一致性。

[ Wu Y, Zeng Y, Zhao Y, et al.Monitoring and dynamic analysis of fractional vegetation cover in the Hai River Basin based on MODIS data[J]. Resources Science, 2010,32(7):1417-1424. ]

[12]
陈效逑,王恒.1982-2003年内蒙古植被带和植被覆盖度的时空变化[J].地理学报,2009,64(1):84-94.利用内蒙古地区1982-2003年遥感归一化差值植被指数(NDVI)数据,对植被带进行了分时段的划分,并以典型草原植被带为例,分析植被覆盖度时空变化及其与水热因子的关系。结果表明:在整个研究期间,典型草原带的面积呈增加的趋势,荒漠草原带的面积呈减少的趋势,森林带、森林草原带和荒漠带的面积趋势变化不明显。总体上看,从时段1(1982-1987年)到时段2(1988-1992年)植被带进化演变的面积占优势,从时段2(1988-1992年)到时段3(1993-1998年)进化和退化演变的面积相当,从时段3(1993-1998年)到时段4(1999-2003年)退化演变的面积占优势。在典型草原带内,多年平均植被覆盖度具有明显的季节变化,从5月上半月返青开始到8月下半月达到年最大值,其空间演进以大兴安岭两翼为中心,逐渐向东南的西辽河平原和向西的乌兰察布高原扩展。前期降水量与覆盖度季节增量年际变化之间呈正相关,显著正相关的区域位于锡林郭勒高原西部和乌兰察布高原,而气温与覆盖度季节增量年际变化的相关一般不显著。典型草原年最大覆盖度线性趋势降低与升高的面积分别占52.6%和47.4%,其中,呼伦贝尔高原西部边缘以及大兴安岭山麓两侧的年最大覆盖度呈显著降低的趋势,而西辽河平原西南部和努鲁儿虎山东段的年最大覆盖度呈显著升高的趋势。年降水量是影响年最大覆盖度的主要因子,而年均温对年最大覆盖度的影响不明显。

DOI

[ Chen X Q, Wang H.Spatial and temporal variations of vegetation belts and vegetation cover degrees in Inner Mongolia from 1982 to 2003[J]. Journal of Geographical Science, 2009,64(1):84-94. ]

[13]
Choudhury B J, Ahmed N U, Idso S B, et al.Relations between evaporation coefficients and vegetation indices studied by model simulations[J]. Remote Sensing of Environment, 1994,50(1):1-17.Calculations using a heat balance and a radiative transfer model have been done to study relations among evaporation coefficients and vegetation indices. The evaporation coefficients are the crop coefficient (defined as the ratio of total evaporation and reference crop evaporation) and the transpiration coefficient (defined as the ratio of unstressed transpiration and reference crop evaporation), while the vegetation indices considered in this study are the normalized difference, soil adjusted vegetation index, and transformed soil adjusted vegetation index. The reference crop evaporation has been calculated using the Priestley-Taylor equation. The observed variations of crop (wheat) height, leaf area index, and weather conditions for 30 days at Phoenix (Arizona), together with the reflectances of different types of soil in wet and dry states, are used in the simulation. The total evaporation calculated from the model compared well with lysimeter observations. Variations in soil evaporation can introduce considerable scatter in the relation between the crop coefficient and leaf area index, while this scatter is much less for the relation between transpiration coefficient and leaf area index. The simulation results for 30 days of crop and weather data and reflectances of 19 soil types in wet and dry conditions gave significant linear correlations between the transpiration coefficient and the vegetation indices, the explained variance (r 2 ) being highest for the soil adjusted vegetation index ( r 2 = 0.88) and lowest for the normalized difference ( r 2 = 0.81). A clump model is used to address the effect of spatial heterogeneity on the relationship between the transpiration coefficient and soil adjusted vegetation index. These simulated relationships between transpiration coefficient and vegetation indices for wheat are discussed in the context of the relationships derived from observations for several crops and grasses. The present analysis provides a theoretical basis for estimating transpiration from remotely sensed data.

DOI

[14]
Rundquist B C.The influence of canopy green vegetation fraction on spectral measurements over native tallgrass prairie[J]. Remote Sensing of Environment, 2002,81(1):129-135.Spectral vegetation indices (SVIs) calculated from remotely sensed data are routinely used to monitor spatial and temporal changes in vegetation biophysical characteristics. The most commonly used SVI, the Normalized Difference Vegetation Index (NDVI), has been criticized because of its sensitivity to atmospheric conditions and substrate reflectivity, as well as its insensitivity to increases in vegetation biomass past particular thresholds. Yet, the use of NDVI remains widespread and is attractive because of the ease with which it is calculated. This article examines the utility of NDVI for monitoring the biophysical characteristic of green vegetation fraction (GVF) in comparison to other SVIs suggested as improvements. Statistical relationships between spectral response, presented in the form of SVIs, and GVF of a native tallgrass prairie canopy are explored. Broadband spectra were gathered from close-range during the 1999 growing season at the Konza Prairie Biological Station (KPBS), located in the Flint Hills region of Kansas, USA. Through simple regression analyses, spectra were related to GVF estimates derived from digital color photographs. SVIs evaluated are the NDVI, the Soil Adjusted Vegetation Index (SAVI), and the square of scaled NDVI ( N* 2). Results show that NDVI and N* 2 were statistically related to GVF ( R 2 for NDVI=.77, N* 2=.78) throughout the growing season. The least-squares line defining the relationship between N* 2 and GVF approximated a 1:1 line. For June sample dates, all three SVIs were significant statistical predictors of GVF ( R 2 for NDVI=.89, N* 2=.91, SAVI=.89). Regression coefficients for late-season sample dates were weaker, yet still significant in statistical terms ( R 2 for NDVI=.70, N* 2=.70). While encouraging, these results suggest that further analyses are required to determine the usefulness of SVIs calculated from broadband devices for estimation of GVF when leaf litter dominates the scene.

DOI

[15]
Crick M.Estimating the ecological status and change of riparian zones in andalusia assessed by multi-temporal avhhr datasets[J]. Ecological Indicators, 2009,9(3):422-431.Following the European Commission's Water Framework Directive all surface waters in EU's Member States must reach a good status by 2015. The evaluation of this status will be partly based on ecological criteria, such as the hydro-morphological quality criteria which also evaluate the structure and condition of the riparian zone. Riparian zones with undisturbed or nearly undisturbed condition are given high-ecological status. The agri-environmental measures in the EU promote an extensive use of land to protect the farmed environment and its biodiversity. Recent studies in Andalusia and elsewhere suggest that extensification leads to riparian zones with higher ecological status compared to intensively used areas. We suggest that extensification and thus better ecological status of the riparian zone can be partly approximated by the amount of vegetation permanently present on the area. For this the so-called permanent vegetation fraction was derived from a multi-temporal advanced very high-resolution radiometer (AVHRR) dataset and was used (1) to classify the ecological status of the riparian zone into two classes, favourable and unfavourable, and (2) to assess the effect of agricultural practices on these areas. The classification was validated by field observations in the Guadalquivir river basin while detailed information on farming practices helped to assess the effect of agriculture on the riparian zone. The assessment was carried out in olive land cover because erosion control in olive cultivations is the most widely implemented measure in Andalusia. Results suggest that the remotely sensed permanent vegetation fraction is a good indicator of the favourable and unfavourable ecological status of the riparian zone. Furthermore, extensification of agricultural practices expressed in terms of increasing permanent vegetation cover was shown to have positive effect on the riparian zone as opposed to areas where no measures were implemented.

DOI

[16]
吴月圆,徐天蜀,岳彩荣.基于MODIS/NDVI的云南省近十年植被动态监测分析[J].绿色科技,2013(10):134-135.介绍了植被、植被指数、归一化植被指数等相关概念。对收集的MODIS遥感数据运用GIS软件ARCGIS 9.3进行了图像的融合、裁切、提取等处理,从而获取到研究区域云南省自2002年2月至2012年12月的每个月的平均NDVI值。对NDVI值动态变化进行了分析,结果表明:研究区域云南省的植被近13年来总体呈上升趋势,植被生长状况向好的方向发展。

DOI

[ Wu Y Y, Xu T S, Yue C R.Monitoring and analysis of vegetation dynamics in Yunnan Province in recent ten years based on MODIS/NDVI[J]. Journal of Green Science and Technology, 2013(10):134-135. ]

[17]
刘珊珊,王建雄,牛超杰,等.基于NDVI的云南省植被覆被变化趋势分析[J].湖北农业科学,2017,56(11):2037-2040.选取云南省为研究区域,利用2001-2015年MODIS中国植被指数合成产品Tiff遥感图像,通过Arcgis软件对遥感图像进行分区统计,得到研究区域各年每月的植被归一化指数(NDVI)。在此基础上进行统计分析,结合当地的生长季与种植制度,分析研究区域植被指数的年际、季节及月变化的特点。结果表明,在2001-2015年,云南省植被指数有增加的趋势,表明在2001-2015年云南省植被覆盖度基本保持稳定或略有增加的趋势;2001-2015年云南省春季和冬季的NDVI整体呈增加趋势,冬季的增速大于春季,夏季NDVI整体呈减少趋势,而秋季处于平稳状态,说明云南省2001-2015年春、冬两季植被覆盖度不断增加;云南省NDVI月变化差异较为明显,与当地生长季和种植制度密切相关,说明植被指数的月变化特征主要受种植作物的影响。

DOI

[ Liu S S, Wang J X, Niu C J, et al.Trend analysis of vegetation cover change in Yunnan Province based on NDVI[J]. Hubei Agricultural Sciences, 2017,56(11):2037-2040. ]

[18]
王金亮,高雁.云南省近20年植被动态变化遥感时序分析[J].云南地理环境研究,2010,22(6):1-7.植被动态变化监测是生态环境变化监测的重要内容.利用20年的AVHRR 8 km的NDVI数据集,研究了云南省的植被指数变化特征,结果表明:(1)云南省植被具有明显的季节差异和空间差异.植被总生长季节为5月上旬到10月中旬.滇西南地区植被覆盖度高,植被指数最早达到峰值,生长期较其他区域长,冬季植被指数最高.滇东北地区的NDVI值较其他区域变动幅度不大,但冬季植被指数在各区中属最低.滇中、滇东南、滇南、滇西生长季的开始各不一,滇东南最早4月中旬、滇中和滇南相近在5月中下旬、滇西最迟在7月上旬.近20年来云南省的全省的平均生长季已延长一旬,主要表现在春季提早一旬开始.(2)1982~2001年,云南省全区的植被指数有增加的趋势,植被覆盖略有上升.滇东北植被指数最低,滇西南植被指数最高.滇南、滇西、滇东南植被指数变动趋势与全区相类似,表现出植被指数增长的趋势.滇西北、滇中植被指数的变化幅度介于滇东北和全省植被指数变化曲线之间.滇东北植被指数变化曲线波动幅度不大,最低值出现在1984年,在1990年植被指数下降,在随后几年植被指数略有上升,但平均NDVI在全省范围内属最低.滇东南、滇南、滇西年植被指数变化与全省的波动幅度的相近,波动范围在0.02~0.08.全省、滇西南、滇东北、滇中、滇东南区域曲线走势相似,滇西和滇西北的曲线走势相似,波峰、波谷的出现年份极为相近.

DOI

[ Wang J L, Gao Y.RS-Based analysis on vegetation temporal changes in 1982-2002 of Yunnan Province[J]. Yunnan Geographic Environment Research, 2010,22(6):1-7. ]

[19]
Pandey P C, Mandal V P, Katiyar S, et al.Geospatial approach to assess the impact of nutrients on rice equivalent yield using MODIS Sensors' based MOD13Q1-NDVI data[J]. IEEE Sensors Journal, 2015,15(11):6108-6115.Crop productivity is a major concern all over the world to provide food security, resulting in the green revolution. It is noteworthy that the fertilizer implemented to farmland leads to more desirable cropping patterns. Utilization of agricultural land efficiently for the crop production requires the knowledge of the nutrient inconsistency. This paper has presented the power of geomatics, to retrieve the synoptic and substantial changes in cropping pattern. Results and interpretations lead to the evaluation of the contemporaneous cropping systems. After a major yield parameter scrutiny for crops (rice, wheat, sugarcane, and onion), the magnificent accelerations were suggested. Results demonstrated a correlation r2 value of 0.834 with the estimated crop yield and normalized difference vegetation index. The Rice Equivalent Yield (REY) is highest at the range of 17-21 t/ha in the North, central and southern lower part, lowest at the western part ranging from 7-12 t/ha, with some part with 12-14 t/ha, while the most of the eastern part of the study site has shown the REY values ranging from 14 to 17 t/ha. The surveyed information, such as pH, electical conductivity, and organic carbon of the soil specimen, was used to examine the spatial discrepancies of rice-based cropping system's productivity. Ultimately, the spatialtemporal maps of fertilization pattern, yield parameters (e.g., N, F, and K), and relational REY observation were illustrated using spatial interpolation.

DOI

[20]
Galvã£O L S, Breunig F M, Teles T S, et al. Investigation of terrain illumination effects on vegetation indices and VI-derived phenological metrics in subtropical deciduous forests[J]. Mapping Sciences & Remote Sensing, 2016,53(3):360-381.We used RapidEye and Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra data to study terrain illumination effects on 3 vegetation indices (VIs) and 11 phenological metrics over seasonal deciduous forests in southern Brazil. We applied TIMESAT for the analysis of the Enhanced Vegetation Index (EVI) and the Normalized Difference Vegetation Index (NDVI) derived from the MOD13Q1 product to calculate phenological metrics. We related the VIs with the cosine of the incidence angle i (Cos i) and inspected percentage changes in VIs before and after topographic C-correction. The results showed that the EVI was more sensitive to seasonal changes in canopy biophysical attributes than the NDVI and Red-Edge NDVI, as indicated by analysis of non-topographically corrected RapidEye images from the summer and winter. On the other hand, the EVI was more sensitive to terrain illumination, presenting higher correlation coefficients with Cos i that decreased with reduction in the canopy background L factor. After C-correction, the RapidEye Red-Edge NDVI, NDVI, and EVI decreased 2%, 1%, and 13% over sunlit surfaces and increased up to 5%, 14%, and 89% over shaded surfaces, respectively. The EVI-related phenological metrics were also much more affected by topographic effects than the NDVI-derived metrics. From the set of 11 metrics, the 2 that described the period of lower photosynthetic activity and seasonal VI amplitude presented the largest correlation coefficients with Cos i. The results showed that terrain illumination is a factor of spectral variability in the seasonal analysis of phenological metrics, especially for VIs that are not spectrally normalized.

DOI

[21]
熊俊楠,彭超,范春捆,等.基于MODIS时序数据的汶川地震灾区植被覆盖变化监测[J].应用基础与工程科学学报,2018,26(1):60-69.本文以MODIS数据为基础,构建了基于归一化植被指数(NDVI)的植被覆盖估算像元二分模型,分别计算汶川地震灾区2008~2015年共8个时相的植被覆盖度,以此为基础定量分析了汶川地震对植被的破坏程度,地震后植被逐年恢复状况.结果表明:地震灾区平均植被覆盖度在震后显著降低,其降低程度与地震烈度呈正相关,截至2015年,灾区平均植被覆盖度恢复至地震前水平.不同烈度区植被覆盖变化速率和构成具有差异性,总体表现为烈度9°区恢复速度最快,7°区恢复速度最慢,不同等级植被覆盖度的空间格局发生了显著变化.研究结果对发展遥感植被覆盖监测理论,汶川地震灾区生态环境恢复、灾害评价与水土保持等具有重要理论和现实意义.

[ Xiong J N, Peng C, Fan C K, et al.Dynamic monitoring of vegetation fraction change in disaster area of Wenchuan earthquake based on MODIS Time-series data[J]. Journal of Basic Science and Engineering, 2018,26(1):60-69. ]

[22]
赵舒怡,宫兆宁,刘旭颖. 2001-2013年华北地区植被覆盖度与干旱条件的相关分析[J].地理学报,2017,70(2):717-729.Climate change is one of the most important factors that affect vegetation distribution in North China. Among all climatic factors, drought is considered to have the most significant effect on the environment. Based on previous studies, the climate drought index can be used to assess the evolutionary trend of the ecological environment under various arid climatic conditions. It is necessary for us to further explore the relationship between vegetation coverage(index) and climate drought conditions. Therefore, in this study, based on MODIS-NDVI products and meteorological observation data, the Palmer Drought Severity Index(PDSI) and vegetation coverage in North China were first calculated. Then, the interannual variations of PDSI and vegetation coverage during 2001 2013 were analyzed using a Theil-Sen slope estimator. Finally, an ecoregion perspective of the correlation between them was discussed. The experimental results demonstrated that the PDSI index and vegetation coverage value varied over different ecoregions. During the period 2001 2013, vegetation coverage increased in the southern and northern mountains of North China, while it showed a decreasing trend in the Beijing-Tianjin-Tangshan City Circle area and suburban agricultural zone located in Hebei Province and Henan Province). Over 13 years, the climate of the northeastern part of North China became more humid, while in the southern part of North China, it tended to be dry. According to the correlation analysis results, 73.37% of North China showed a positive correlation between the vegetation coverage and climate drought index. A negative correlation was observed mainly in urban and suburban areas of Beijing, Tianjin, Hebei Province, and Henan Province. In most parts of North China, drought conditions in summer and autumn had a strong influence on vegetation coverage.

DOI

[ Zhao S Y, Gong, Z N, Liu X Y, et al. Correlation analysis between vegetation coverage and climate drought conditions in North China during 2001-2013[J]. Acta Geographica Sinica, 2017,70(2):717-729. ]

[23]
李苗苗. 植被覆盖度的遥感估算方法研究[D].北京:中国科学院研究生院(遥感应用研究所),2003.

[ Li M M.The method of vegetation fraction estimation by remote sensing[D]. Beijing: Graduate University of Chinese Academy of Sciences (Institute of Remote Sensing Applications), 2003. ]

[24]
何宝忠,丁建丽,张喆,等.新疆植被覆盖度趋势演变实验性分析[J].地理学报,2016,71(11):1948-1966.基于MODIS-NDVI数据,提取新疆2005-2015年植被覆盖度(FVC)。通过依据海拔和植被覆盖度的指标划分出山地、绿洲、平原、荒漠等11个子系统。通过斜率、变异系数、线性回归模型等方法来对全疆和不同生态分区的现状和未来发展趋势进行分析,并用BP人工神经网络来预测新疆2016-2020年的植被覆盖度的时空变化和分析2005-2020年时空动态变化趋势。主要结论为:1新疆植被覆盖度总体为上升趋势,从西北向东南逐渐下降;山地呈逐年上升趋势,荒漠呈不显著退化趋势。植被覆盖度的变化主要是由降水量的变化引起;2在整个新疆的荒漠和绿洲边缘构成了一个"绿洲—荒漠改善过渡带",绿洲呈明显的改善趋势;3 2009年是研究期内多数分区植被覆盖度的历史最低点;4在山脉的冰川积雪、湖泊周围的变异性很大,范围在150%~316%之间,这主要是由于气候变化、冰川消融和湖泊水位的波动变化所致;5北疆生态明显好于东疆与南疆,其绿洲区域呈现明显的改善趋势。伊犁地区的植被覆盖度相比于其他3个分区的变幅很大,山地区域呈明显的逐年退化趋势。伊犁地区植被覆盖度的局部最低点是在2008年,比其他分区的2009年提前了一年,相应的存在"实时"(伊犁)和"滞后"(东疆、南疆和北疆)的效应,主要是由于降水量和气温的变化所致。

DOI

[ He B Z, Ding J L, Zhang Z, et al.Experimental analysis of spatial and temporal dynamics of fractional vegetation cover in Xinjiang[J]. Acta Geographica Sinica, 2016,71(11):1948-1966. ]

[25]
张方. 基于ERDAS的交通走廊带植被覆盖度变化研究[D].西安:长安大学,2010.

[ Zhang F.Research on dynamic change of vegetation coverage in the traffic corridor based on ERDAS[D]. Xi'an: Chang'an University, 2010. ]

[26]
贾媛. 河保偏矿区植被覆盖度演变趋势与驱动力分析[D].太原:山西大学,2012.

[ Jia Y.Analysis of the evolution trend of He-Bao-Pian Mining Area FVC and the driving force[D]. Taiyuan: Shanxi University, 2012. ]

[27]
王朋. 基于3S技术的大渡河上游植被覆盖度时空变化研究[D].成都:四川农业大学,2012.

[ Wang P.Study on temporal and spatial variation of thevegetation coverage in the upper reaches of Dadu River' based on 3S technology[D]. Chengdu: Sichuan Agricultural University, 2012. ]

文章导航

/