福州市地表温度热点及时空变化分析
作者简介:陈冰倩(1994-),女,福建福州人,硕士生,主要研究方向为热红外遥感、图像分析研究。E-mail: bingqianvip@163.com
收稿日期: 2018-11-20
要求修回日期: 2019-02-21
网络出版日期: 2019-05-25
基金资助
福建省公益类科研院所专项(2019R1102)
福建省自然科学基金项目(2018J01739)
The Hot Spot and Spatiotemporal Changes of the Land Surface Temperature in Fuzhou
Received date: 2018-11-20
Request revised date: 2019-02-21
Online published: 2019-05-25
Supported by
Public Welfare Research Institutes of Fujian Province, No. 2019R1102
Natural Science Foundation of Fujian Province, No. 2018J01739.
Copyright
中国作为世界第一大发展中国家,近年来城镇化发展迅速,大量自然地表转化为人工地表,从而引起了一系列环境问题,其中以城市热岛问题最为显著。因此如何缓解因城市化进程的加快引起的城市热岛效应已成为热门研究方向。为精确分析城市空间格局对热集聚的影响,本研究利用2000年5月4日的Landsat ETM+和2016年7月27日获取的Landsat OLI两期遥感影像,获取福州市的土地覆盖信息并进行精度验证。在地表温度(Land Surface Temperature, LST)反演基础上通过热点分析(Getis-Ord Gi*),并结合不透水面(Impervious Surface Area, ISA)信息来研究城市化进程中福州市16 年来 LST的变化特性,空间集聚特性及其产生的尺度效应。热点分析结果显示:① 通过分析福州市内各地和热点中心的距离与LST的关系可较好地反映空间热聚集。2000 年在距热点中心0.97、1.03、0.95 km范围内热聚集明显;2016 年则增长到分别在距热点中心半径1.89、2.01、2.10、2.05、2.13 km范围内热集聚显著且热点区数量也从3 个增加至5 个。热集聚区(热点区和较热区)总面积在此期间从15.7%增至47.3%;② 由于热点图中的热点区和冷点区的形成不单取决于LST的高低,因此热点分析与空间自相关分析方法相比,能更直观地分析土地覆盖变化对LST的影响,了解城市内部热强度变化的细节。本研究采用的热点分析方法可用于城市环境保护与规划,将来还可作为城市土地规划与热环境影响的分析依据。同时可利用热点分析图模拟城市微气候,估算城市绿地降温程度等。此外,未来还可基于此进一步探讨更多时相以及不同城市的对比分析,特别是对不同城市类型如带状城市,多中心城市及中心城市等的研究。
陈冰倩 , 张友水 , 程璟媛 , 赵雪 . 福州市地表温度热点及时空变化分析[J]. 地球信息科学学报, 2019 , 21(5) : 710 -719 . DOI: 10.12082/dqxxkx.2019.180597
As the largest developing country in the world, China has witnessed rapid urbanization in the recent years. A large amount of natural land surface has been transformed into artificial land surface, leading to a series of environmental problems, among which the most prominent is urban heat island.Therefore, how to mitigate the urban heat island effect caused by the acceleration of urbanization process has become a hot research direction. To accurately analyze the influence of urban spatial pattern on thermal concentration, this article used two periods of remote sensing imagery, Landsat ETM+ on May 4, 2000 and Landsat OLI on July 27, 2016, to obtain the land cover information of Fuzhou and verified the accuracy. The hot spot analysis of the retrieved land surface temperature (LST) and impervious surface area (ISA) of Fuzhou were used to study the change characteristics, spatial concentration characteristics, and scale effect of LST in the past sixteen years of urbanization. The hot spot results show the following two findings. (1) The spatial thermal concentration could be better illustrated through analyzing the relationship between the distance from city center and LST. In 2000, the urban heat island effect was significant within a 1.03 km distance from the city center; however, in 2016 the distance increased to 2.1 km and the number of hot spots increased from three to five. During this period, the hot concentrated area (the hot and less hot areas) also increased from 15.7% to 47.3%. (2) Compared with other spatial autocorrelation analysis methods, Getis-Ord Gi* can help more directly analyze the impact of land cover change on LST and understand the details of the change of urban internal thermal intensity, because the formation of hot and cold spots depends on not only the level of LST. The hot spot method adopted in this study can be used for urban environmental protection and planning, and can also be used as a basis for urban land planning and thermal environmental impact analysis in the future. Meanwhile, the hot spot chart can be used to simulate urban microclimate and estimate the cooling effect of urban green space. In addition, comparative analyses of more multi-temporal and different cities can be further discussed in the future, especially studies on different types of cities, such as strip cities, polycentric cities and central cities.
Fig. 1 Landsat 8 imagery of Fuzhou City, acquired in July 2016图1 福州市2016年7月Landsat8遥感影像 |
Fig. 2 Normalized land surface temperature in Fuzhou City in 2000 and 2016图2 2000年和2016年福州市归一化地表温度 |
Tab. 1 Accuracy verification of the land cover classification in Fuzhou city in 2000 and 2016表1 2000年和2016年福州市土地覆盖分类精度验证 |
测试区 | 年份 | ETM+/OLI影像面积/km2 | Google影像面积/km2 | 平均差异/% ([ETM+/OLI-google]/google) | |||||
---|---|---|---|---|---|---|---|---|---|
ISA | 植被 | ISA | 植被 | ISA | 植被 | ||||
测试区1 | 2000 | 0.074 | 0.034 | 0.076 | 0.033 | -2.6 | 3.0 | ||
2016 | 0.082 | 0.014 | 0.079 | 0.013 | 3.8 | 7.2 | |||
测试区2 | 2000 | 0.406 | 0.020 | 0.377 | 0.021 | 7.7 | -4.8 | ||
2016 | 0.113 | 0.077 | 0.110 | 0.074 | 2.7 | 3.9 | |||
测试区3 | 2000 | 0.106 | 0.089 | 0.110 | 0.091 | -3.6 | -2.2 | ||
2016 | 0.387 | 0.046 | 0.356 | 0.048 | 8.7 | -4.2 | |||
测试区4 | 2000 | 0.207 | 0.122 | 0.215 | 0.129 | -3.7 | -5.4 | ||
2016 | 0.224 | 0.093 | 0.239 | 0.098 | -6.3 | -5.1 | |||
总计 | 2000 | 0.793 | 0.265 | 0.778 | 0.274 | 1.9 | -3.3 | ||
2016 | 0.806 | 0.230 | 0.784 | 0.233 | 2.8 | -1.3 |
Fig. 3 Impervious surface coverage (ISC) in the study area in 2000 and 2016, and areas with ISC changed over 95%图3 2000和2016年福州市内ISC>95%的变化情况 |
Fig. 4 Urban hotspot distribution in Fuzhou city in 2000 and 2016图4 2000年和2016年福州市热点分布 |
Fig. 5 Changes in the mean normal differential vegetation index (NDVI), mean normalized land surface temperature (MNLST), and mean ISC in Fuzhou City in 2000 and 2016图5 2000年和2016年福州市平均NDVI、MNLST和平均ISC变化情况 |
Fig. 6 Urban hotspot distribution in Fuzhou city in 2000 and 2016图6 2000年和2016年福州市热点分布 |
Fig. 7 Changes in the mean normalized land surface temperature (MNLST) and mean ISC at different distances from the hot spot center in 2000 and 2016图7 2000年和2016年距热点中心不同距离时MNLST和平均ISC变化情况 |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
[
|
[3] |
[
|
[4] |
[
|
[5] |
[
|
[6] |
[
|
[7] |
[
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
[
|
[14] |
[
|
[15] |
[
|
[16] |
|
[17] |
ICESS. MODIS UCSB Emissivity Library[OL]. , 2013
|
[18] |
|
[19] |
|
[20] |
[
|
[21] |
|
[22] |
[
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
/
〈 | 〉 |