基于夜间灯光和土地利用数据的云南沿边地区GDP空间差异性分析
作者简介:卢秀(1992- ),女,江苏淮安人,博士生,主要从事资源环境遥感、夜间灯光遥感研究。E-mail: lx_rsgis@163.com
收稿日期: 2018-09-24
要求修回日期: 2019-01-02
网络出版日期: 2019-03-15
基金资助
国家自然科学基金项目(41561048)
Spatial Difference of GDP in Yunnan Border Area based on Nighttime Light and Land Use Data
Received date: 2018-09-24
Request revised date: 2019-01-02
Online published: 2019-03-15
Supported by
National Natural Science Foundation of China, No.41561048.
Copyright
云南沿边地区包括8个地州,共56个县,其中有25个县市与老挝、缅甸和越南直接毗邻,具有重要的地缘位置。本研究利用土地利用数据和夜间灯光数据在实现云南沿边地区GDP空间化的基础上,对GDP的空间分布格局进行深入探讨,这对缩小区域经济差异及促进地区共同发展具有一定的指导意义。采用土地利用数据对国内生产总值(Gross Domestic Product, GDP)数据的第一产业进行空间化拟合,采用DMSP/OLS夜间灯光数据对GDP的第二、三产业进行拟合,将第一产业和第二、三产业空间化拟合的结果相加,实现云南沿边地区1992-2013年的GDP的空间化拟合。在此基础上对云南沿边地区GDP空间分布差异进行分析。结果表明:① 土地利用数据对第一产业建模的效果较好,拟合的多期数据的相对误差均低于1.12%,采用夜间灯光数据,基于“分类回归”方法对第二、三产业拟合相对误差最大仅为6.404%,最终二者之和拟合的GDP拟合精度都较好,相对误差最大仅为4.241%;② 22期GDP数据在空间分布上均呈现正的相关性,且均为显著集聚;③ GDP空间分布局部集聚的高值-高值区域集中在开远、蒙自等县域,低值-低值地区集中在绿春、西蒙等地区;④ 云南沿边地区县域之间的经济差异在1992-1996年逐渐增强,1996年之后,经济差异波动缩小,空间关联效应呈现波动式的增强和减弱;⑤ 云南沿边地区的三维插值结果均呈现出西北至东南一线的“洼地-丘陵-平地-高峰”地势变化格局,沿边地区的东南角地区即红河州的建水、个旧和开远等县市的GDP最高,“丘陵”地势主要集中在腾冲、保山市以及最南部的景洪地区,“洼地-平地”地势主要分布在沿边地区西北角的贡山和福贡等县域、西南角的西蒙和孟连等县及中部区域的绿春和江城县等地区。
关键词: GDP; 空间差异性; 云南沿边地区; DMSP/OLS夜间灯光数据; 土地利用数据
卢秀 , 李佳 , 段平 , 李晨 , 王金亮 . 基于夜间灯光和土地利用数据的云南沿边地区GDP空间差异性分析[J]. 地球信息科学学报, 2019 , 21(3) : 455 -466 . DOI: 10.12082/dqxxkx.2019.180483
Yunnan border area is an important geographic location. It is composed of 56 counties in 8 municipalities. Among which, 25 counties are adjacent to Laos, Myanmar, and Vietnam. Land use and nighttime light data were used in this study to explore the spatial pattern of GDP based on the spatialization of GDP in the Yunnan border area. This study was expected to inform policy on reducing economic gaps between regions and promoting regional common development. The land use data was used to spatially fit the Gross Domestic Product (GDP) from the first industry, and the DMSP/OLS nighttime light data was used to fit GDP from the second and third industries. The fitting results were summed up to realize the spatialization of total GDP in the border area of Yunnan province from 1992 to 2013. Based on this, the spatial difference of GDP in the Yunnan border area was analyzed. The results showed that: (1) The land use data could be well used to model the GDP from the first industry, with goodness of fit (R2) being greater than 0.82 in each year and overall relative error being less than 1.12%. The nighttime light data and the classification regression method were used to fit the GDP from the second and third industries. The maximum relative error of fitting was 6.404%, and the fitting accuracy of the sum of the two industries was satisfactory with the maximum relative error being only 4.241%; (2) The 22-phase GDP data of the Yunnan border area was positively correlated in space, presenting an obvious clusters; (3) The distribution of GDP cluster in the county was characterized by High-High values (HH) and Low-Low values (LL). The distribution of Low-High and High-Low values was scattered with no regularity. The clustered high values of GDP were concentrated in Kaiyuan, Mengzi, and other counties, while the clustered low values of GDP were concentrated in Luchun, Ximeng, and other counties; (4) The economic gap between counties in the Yunnan border area gradually increased from 1992 to 1996 followed by a decrease trend afterward. The spatial correlation effect showed a fluctuation of increase and decrease; (5) Results of three-dimensional interpolation in the Yunnan border area presented a topographical pattern of “depression-hill-flat-peak” from the northwest to the southeast. The counties in the southeast corner of the border area such as Jianshui, Gejiu and Kaiyuan and other counties in the Honghe municipality, had the highest GDP. The “hill” terrain was mainly concentrated in Tengchong, Baoshan city, and the southernmost Jinghong area. The terrain of “depression-flat” was mainly distributed in the counties such as Gongshan and Fugong in the northwest corner of the border area, the counties in the southwest corner of Ximen and Menglian, and in the central area, such as Luchun and Jiangcheng counties.
Fig. 1 Study area and nighttime light distribution of 2010图1 研究区范围及2010年夜间灯光分布 |
Fig. 2 Flow chart of GDP23 classification regression fitting model图2 GDP23分类回归拟合流程 |
Fig. 3 Spatial variation curve图3 空间变差函数曲线 |
Fig. 4 Spatial results of GDP in Yunnan border area from 1995 to 2010图4 1995-2010年云南沿边地区GDP空间化结果 |
Tab. 1 Evaluation results of GDP spatial fitting accuracy表1 云南沿边地区1992-2013年的GDP空间化拟合精度评价结果 |
年份 | 第一产业 | 第二、三产业 | GDP | |||||||
---|---|---|---|---|---|---|---|---|---|---|
模型R2 | 残差/亿元 | 相对误差/% | 模型R2 | 残差/亿元 | 相对误差/% | 残差/亿元 | 相对误差/% | |||
1992 | 0.854 | -0.536 | 0.784 | 0.953 | -1.463 | 1.872 | -1.999 | 1.365 | ||
1993 | 0.872 | -0.845 | 1.116 | 0.948 | -5.090 | 5.155 | -5.934 | 3.403 | ||
1994 | 0.834 | -0.422 | 0.432 | 0.945 | -5.662 | 4.305 | -6.084 | 2.654 | ||
1995 | 0.827 | -0.148 | 0.120 | 0.920 | -3.235 | 1.983 | -3.384 | 1.180 | ||
1996 | 0.823 | -0.210 | 0.144 | 0.922 | -9.200 | 4.786 | -9.410 | 2.786 | ||
1997 | 0.842 | 0.490 | -0.308 | 0.913 | -9.840 | 4.451 | -9.349 | 2.459 | ||
1998 | 0.867 | -0.230 | 0.140 | 0.950 | -15.989 | 6.382 | -16.219 | 3.912 | ||
1999 | 0.870 | -0.930 | 0.553 | 0.957 | 11.576 | -4.252 | 10.646 | -2.418 | ||
2000 | 0.873 | -0.822 | 0.476 | 0.963 | 11.307 | -3.737 | 10.485 | -2.205 | ||
2001 | 0.877 | -0.824 | 0.469 | 0.904 | 22.212 | -6.349 | 21.389 | -4.070 | ||
2002 | 0.875 | -0.899 | 0.492 | 0.886 | 25.604 | -6.404 | 24.704 | -4.241 | ||
2003 | 0.868 | -1.173 | 0.592 | 0.978 | 5.669 | -1.266 | 4.497 | -0.696 | ||
2004 | 0.883 | -0.329 | 0.147 | 0.931 | 28.009 | -5.087 | 27.680 | -3.575 | ||
2005 | 0.883 | -1.411 | 0.529 | 0.915 | 11.260 | -1.688 | 9.849 | -1.055 | ||
2006 | 0.882 | -2.610 | 0.882 | 0.946 | 3.208 | -0.398 | 0.598 | -0.054 | ||
2007 | 0.882 | -2.904 | 0.835 | 0.939 | -7.293 | 0.750 | -10.197 | 0.772 | ||
2008 | 0.884 | -0.376 | 0.094 | 0.933 | -27.034 | 2.364 | -27.411 | 1.774 | ||
2009 | 0.886 | -0.565 | 0.126 | 0.950 | -33.884 | 2.594 | -34.448 | 1.964 | ||
2010 | 0.882 | -2.141 | 0.432 | 0.947 | -30.572 | 1.963 | -32.714 | 1.593 | ||
2011 | 0.888 | -0.924 | 0.153 | 0.934 | 11.459 | -0.600 | 10.535 | -0.419 | ||
2012 | 0.897 | 4.461 | -0.601 | 0.915 | 17.417 | -0.765 | 21.878 | -0.725 | ||
2013 | 0.902 | 6.340 | -0.745 | 0.903 | 48.677 | -1.858 | 55.017 | -1.585 |
Tab. 2 Spatial autocorrelation analysis results of Yunnan border area表2 云南沿边地区空间全局自相关分析结果 |
年份 | Moran's I值 | Z值 | P值 |
---|---|---|---|
1992 | 0.1583 | 2.6365 | 0.0084 |
1993 | 0.1623 | 2.6784 | 0.0074 |
1994 | 0.1404 | 2.3618 | 0.0182 |
1995 | 0.1466 | 2.4527 | 0.0142 |
1996 | 0.1580 | 2.6122 | 0.0090 |
1997 | 0.1592 | 2.6310 | 0.0085 |
1998 | 0.1519 | 2.5200 | 0.0117 |
1999 | 0.1617 | 2.6754 | 0.0075 |
2000 | 0.1594 | 2.6452 | 0.0082 |
2001 | 0.1531 | 2.6903 | 0.0071 |
2002 | 0.1395 | 2.6226 | 0.0087 |
2003 | 0.1490 | 2.7461 | 0.0060 |
2004 | 0.1713 | 2.9983 | 0.0027 |
2005 | 0.1889 | 3.1890 | 0.0014 |
2006 | 0.1839 | 3.0619 | 0.0022 |
2007 | 0.1932 | 3.1743 | 0.0015 |
2008 | 0.2213 | 3.5947 | 0.0003 |
2009 | 0.2272 | 3.6522 | 0.0002 |
2010 | 0.2308 | 3.6996 | 0.0002 |
2011 | 0.2232 | 3.5772 | 0.0003 |
2012 | 0.2107 | 3.3908 | 0.0007 |
2013 | 0.2041 | 3.2864 | 0.0010 |
Fig. 5 Temporal trends of Moran's I, Z, and P value from 1992 to 2013图5 1992-2013年Moran's I值、Z值和P值随时间变化的趋势 |
Fig. 6 LISA cluster map of GDP in Yunnan border area图6 云南沿边地区GDP的LISA集聚图 |
Tab. 3 Statistics of local autocorrelation for counties′ GDP in the Yunnan border area from 1992 to 2013表3 1992-2013年云南沿边地区GDP局部自相关县域数量统计 |
年份/类型 | HH | LL | LH | HL | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
数量 | 占比/% | 数量 | 占比/% | 数量 | 占比/% | 数量 | 占比/% | ||||
1992 | 4 | 7.14 | 2 | 3.57 | 0 | 0.00 | 1 | 1.79 | |||
1993 | 5 | 8.93 | 2 | 3.57 | 1 | 1.79 | 1 | 1.79 | |||
1994 | 4 | 7.14 | 4 | 7.14 | 0 | 0.00 | 1 | 1.79 | |||
1995 | 4 | 7.14 | 4 | 7.14 | 0 | 0.00 | 1 | 1.79 | |||
1996 | 4 | 7.14 | 4 | 7.14 | 0 | 0.00 | 1 | 1.79 | |||
1997 | 4 | 7.14 | 5 | 8.93 | 0 | 0.00 | 1 | 1.79 | |||
1998 | 4 | 7.14 | 6 | 10.71 | 1 | 1.79 | 1 | 1.79 | |||
1999 | 4 | 7.14 | 5 | 8.93 | 1 | 1.79 | 1 | 1.79 | |||
2000 | 4 | 7.14 | 5 | 8.93 | 1 | 1.79 | 1 | 1.79 | |||
2001 | 2 | 3.57 | 6 | 10.71 | 1 | 1.79 | 0 | 0.00 | |||
2002 | 2 | 3.57 | 6 | 10.71 | 1 | 1.79 | 0 | 0.00 | |||
2003 | 2 | 3.57 | 6 | 10.71 | 1 | 1.79 | 0 | 0.00 | |||
2004 | 3 | 5.36 | 6 | 10.71 | 1 | 1.79 | 0 | 0.00 | |||
2005 | 3 | 5.36 | 7 | 12.50 | 2 | 3.57 | 0 | 0.00 | |||
2006 | 2 | 3.57 | 7 | 12.50 | 2 | 3.57 | 0 | 0.00 | |||
2007 | 3 | 5.36 | 7 | 12.50 | 2 | 3.57 | 0 | 0.00 | |||
2008 | 3 | 5.36 | 7 | 12.50 | 2 | 3.57 | 0 | 0.00 | |||
2009 | 4 | 7.14 | 7 | 12.50 | 2 | 3.57 | 0 | 0.00 | |||
2010 | 4 | 7.14 | 7 | 12.50 | 2 | 3.57 | 0 | 0.00 | |||
2011 | 5 | 8.93 | 7 | 12.50 | 1 | 1.79 | 0 | 0.00 | |||
2012 | 4 | 7.14 | 5 | 8.93 | 2 | 3.57 | 0 | 0.00 | |||
2013 | 4 | 7.14 | 5 | 8.93 | 1 | 1.79 | 0 | 0.00 |
Tab. 4 Fitting parameters of GDP spatial variation function in Yunnan border areas from 1992 to 2013表4 1992-2013年云南沿边地区GDP空间变差函数拟合参数 |
年份 | 变程a | 块金值C0 | 基台值C0+C | 变差系数C0/(C0+C) | 拟合模型 | R2 |
---|---|---|---|---|---|---|
1992 | 104 442.664 | 0.001 | 0.463 | 0.002 16 | 高斯 | 0.797 |
1993 | 110 158.431 | 0.024 | 0.508 | 0.047 24 | 高斯 | 0.828 |
1994 | 146 500.000 | 0.001 | 0.553 | 0.001 81 | 球状 | 0.855 |
1995 | 155 000.000 | 0.001 | 0.592 | 0.001 69 | 球状 | 0.856 |
1996 | 152 500.000 | 0.001 | 0.626 | 0.001 60 | 球状 | 0.850 |
1997 | 159 300.000 | 0.001 | 0.616 | 0.001 62 | 球状 | 0.867 |
1998 | 153 700.000 | 0.001 | 0.610 | 0.001 64 | 球状 | 0.857 |
1999 | 154 300.000 | 0.001 | 0.597 | 0.001 68 | 球状 | 0.857 |
2000 | 155 600.000 | 0.001 | 0.584 | 0.001 71 | 球状 | 0.866 |
2001 | 118 299.000 | 0.028 | 0.596 | 0.046 98 | 高斯 | 0.853 |
2002 | 112 756.508 | 0.021 | 0.610 | 0.034 43 | 高斯 | 0.831 |
2003 | 110 158.431 | 0.011 | 0.591 | 0.018 61 | 高斯 | 0.834 |
2004 | 100 805.357 | 0.004 | 0.560 | 0.007 14 | 高斯 | 0.804 |
2005 | 134 700.000 | 0.002 | 0.553 | 0.003 62 | 球状 | 0.771 |
2006 | 164 400.000 | 0.001 | 0.567 | 0.001 76 | 指数 | 0.745 |
2007 | 154 200.000 | 0.001 | 0.568 | 0.001 76 | 指数 | 0.711 |
2008 | 153 600.000 | 0.001 | 0.576 | 0.001 74 | 指数 | 0.705 |
2009 | 140 700.000 | 0.062 | 0.556 | 0.111 51 | 球状 | 0.716 |
2010 | 146 700.000 | 0.001 | 0.565 | 0.001 77 | 指数 | 0.693 |
2011 | 145 800.000 | 0.001 | 0.569 | 0.001 76 | 指数 | 0.681 |
2012 | 147 900.000 | 0.007 | 0.556 | 0.012 59 | 指数 | 0.667 |
2013 | 151 200.000 | 0.001 | 0.540 | 0.001 85 | 指数 | 0.687 |
Fig. 7 Three-dimensional Kriging interpolation map of GDP in Yunnan border area in 1995, 2000, 2005 and 2010图7 云南沿边地区1995、2000、2005和2010年的GDP三维Kriging插值结果 |
The authors have declared that no competing interests exist.
[1] |
[
|
[2] |
[
|
[3] |
[
|
[4] |
[
|
[5] |
|
[6] |
[
|
[7] |
[
|
[8] |
|
[9] |
[
|
[10] |
[
|
[11] |
[
|
[12] |
|
[13] |
|
[14] |
[
|
[15] |
|
[16] |
|
[17] |
[
|
[18] |
云南省统计局.云南统计年鉴[M].北京:中国统计出版社,1993-2014.
[ Statistical Bureau of Yunnan Province. Yunnan statistical Yearbook[M]. Beijing: China Statistics Press, 1993-2014. ]
|
[19] |
[
|
[20] |
[
|
[21] |
[
|
[22] |
[
|
[23] |
[
|
/
〈 | 〉 |