时间尺度重构EEMD-GRNN改进模型预测PM2.5的研究
作者简介:符海月(1977-),女,甘肃陇南人,博士,副教授,主要从事土地利用变化,遥感与GIS在人口、资源与环境中的应用研究。E-mail:fuhaiyue@njau.edu.cn
收稿日期: 2018-11-22
要求修回日期: 2019-03-06
网络出版日期: 2019-07-25
基金资助
国家自然科学基金项目(41871319)
Improving the EEMD-GRNN Model for PM2.5 Prediction based on Time Scale Reconstruction
Received date: 2018-11-22
Request revised date: 2019-03-06
Online published: 2019-07-25
Supported by
Program of National Natural Science Foundation of China, No.41871319
Copyright
合理构建PM2.5浓度预测模型是科学、准确地预测PM2.5浓度变化的关键。传统PM2.5预测EEMD-GRNN模型具有较好的预测精度,但是存在过于关注研究数据本身而忽略其物理意义的不足。本研究基于南京市2014-2017年PM2.5浓度时间序列数据,分析PM2.5浓度多尺度变化特征及其对气象因子和大气污染因子的尺度响应,基于时间尺度重构进行EEMD-GRNN模型的改进与实证研究。南京市样本数据PM2.5浓度变化表现为明显的天际尺度和月际尺度,从重构尺度(天际、月际)构建GRNN模型更具有现实意义;同时,PM2.5对PM10、NO2、O3、RH、MinT等因子存在多尺度响应效应,以其作为GRNN模型中的输入变量更具有时间序列上的解释意义。改进后的EEMD-GRNN模型具有更高的PM2.5浓度预测精度,MAE、MAPE、RMSE和R2分别为6.17、18.41%、8.32和0.95,而传统EEMD-GRNN模型的模型有效性检验结果分别为8.37、27.56%、11.56、0.91。对于高浓度天(PM2.5浓度大于100 μg/m3)的预测,改进模型更是全面优于传统EEMD-GRNN模型,MAPE为12.02%,相较于传统模型提高了9.03%。
符海月 , 张祎婷 . 时间尺度重构EEMD-GRNN改进模型预测PM2.5的研究[J]. 地球信息科学学报, 2019 , 21(7) : 1132 -1142 . DOI: 10.12082/dqxxkx.2019.180598
Reasonable construction of PM2.5 concentration prediction models is the key to scientifically and accurately predict PM2.5 concentration dynamics. The traditional EEMD-GRNN model predicts PM2.5 concentration with good prediction accuracy, but focuses more on research data and less on its physical meaning. Based on the time series data of PM2.5 concentration in Nanjing duing 2014-2017, this study analyzed the multi-scale variations of PM2.5 concentration and its scale response to meteorological and atmospheric pollution factors. Additionally, the EEMD-GRNN model was reconstructed and validated based on time scale reconstruction. Results show that: ① based on scale reconstruction, the improved EEMD-GRNN model was scientific in predicting the PM2.5 concentration as it considered the variation of PM2.5 concentration and its multi-scale responses to atmospheric pollutants and meteorological factors. The PM2.5 concentration of Nanjing’s sample data had obvious inter-daily and inter-monthly variations. Thus, it is more practical to construct GRNN modeling at the reconstruction scales (i.e., daily and monthly). Meanwhile, PM2.5 was sensitive to factors such as PM10, NO2, O3, RH, and MinT. Thus, choosing these factors as input variables in the GRNN model can be more explanatory for time-series. ② the improved EEMD-GRNN model was more accurate in predicting PM2.5 concentration. The MAE, MAPE, RMSE, and R2 of the improved models are 6.17, 18.41%, 8.32, and 0.95, respectively, which are superior to the validity test results of the traditional EEMD-GRNN model. Furthermore, for the prediction of high-concentration days (i.e., PM2.5 concentration greater than 100 μg/m3), the improved model was more comprehensive than the traditional EEMD-GRNN model. With the new EEMD-GRNN model, the MAPE is 12.02%, 9.03% higher than the traditional model. Our findings indicate that the improved EEMD-GRNN based on scale reconstruction is an efficient method to scientifically and accurately predict PM2.5 concentration, especially in days with high PM2.5 concentration.
Fig. 1 Flowchart of the improved EEMD-GRNN model图1 改进EEMD-GRNN模型流程 |
Fig. 2 The geographic location of the study area图2 南京市地理位置 |
Tab. 1 Descriptive statistics of the air quality and meteorological data of Nanjing during 2014-2017表1 南京市2014-2017年空气质量和气象数据的描述性统计 |
单位 | 均值 | 标准差 | |
---|---|---|---|
PM2.5 | μg/m3 | 54.75 | 36.88 |
PM10 | μg/m3 | 96.36 | 55.21 |
SO2 | μg/m3 | 19.08 | 10.02 |
CO | mg/m3 | 0.99 | 0.34 |
NO2 | μg/m3 | 48.07 | 18.72 |
O3 | μg/m3 | 103.55 | 51.48 |
日平均风速(WS) | m/s | 2.68 | 1.79 |
日平均大气压(AP) | kPa | 100.60 | 0.88 |
每日地表空气相对湿度(RH) | % | 78.40 | 15.25 |
每日最高温度(MaxT) | ℃ | 20.86 | 8.98 |
每日最低温度(MinT) | ℃ | 13.41 | 8.89 |
每日总降水量(PR) | mm | 4.10 | 11.29 |
Fig. 3 Change in the daily average PM2.5 concentration's absolute anomaly of Nanjing during 2014-2017图3 2014-2017年南京市PM2.5日均浓度绝对距平变化 |
Tab. 2 Period, significance, and variance contribution of each IMF component of the PM2.5 concentration表2 PM2.5浓度各IMF分量的周期、显著性水平及其方差贡献率 |
IMF分量 | IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | IMF7 | IMF8 | IMF9 | RES |
---|---|---|---|---|---|---|---|---|---|---|
周期/d | 3 | 7 | 14 | 27 | 58 | 172 | 417 | 974 | 974 | |
显著性检验/% | >95 | >95 | >95 | >95 | >95 | >95 | >95 | >95 | <50 | |
贡献率/% | 21.46 | 15.06 | 7.85 | 3.94 | 4.75 | 10.57 | 10.18 | 2.58 | 0.01 | 23.61 |
Fig. 4 Results of EEMD decomposition of the PM2.5 daily average concentration of Nanjing from 2014 to 2017图4 南京市2014-2017年PM2.5日均浓度EEMD分解结果 |
Fig. 5 Inter-daily and inter-monthly variations and comparisons with the original PM2.5 concentration图5 南京市天际和月际PM2.5浓度变化与原始PM2.5浓度对比 |
Tab. 3 Period comparison of PM2.5 concentration, atmospheric pollution, and meteorological factors表3 PM2.5浓度与大气污染因子及气象因子周期对比 |
周期/d | PM2.5 | 大气污染因子 | 气象因子 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PM10 | SO2 | CO | NO2 | O3 | WS | AP | RH | MaxT | MinT | PR | |||
天际尺度 | 3 | 3* | 3* | 3* | 3* | 3* | 3* | 4 | 3* | 3* | 3* | 3* | |
7 | 7* | 7* | 7* | 7* | 7* | 7* | 7* | 7* | 7* | 7* | 7* | ||
14 | 13 | 13 | 14* | 14* | 14* | 13 | 15 | 15 | 14* | 13 | 12 | ||
27 | 27* | 27* | 29 | 26 | 28 | 26 | 29 | 32** | 30 | 28 | 24 | ||
月际尺度 | 58 | 56 | 60 | 54 | 62 | 58* | 54 | 52 | 60 | 55 | 56 | 47 | |
172 | 133 | 122 | 162 | 162 | 139 | 112 | 417 | 162 | 325 | 417 | 97 | ||
417 | 417* | 417* | 325 | 417* | 417* | 195 | 584 | 417* | 487 | 974 | 172 | ||
974 | 974* | 731 | 584 | 974* | 974* | 417 | 974* | 974* | 1461 | 1461 | 417 | ||
2922 | 1461 | 1461 | 1461 | 1461 | 1461 | 1461 | 2922* | 1461 | 1461 | 2922* | 974 |
注:*表示因子周期与相应PM2.5浓度变化周期一致;**表示出现在天际尺度中的月际尺度周期。 |
Fig. 6 Trends of the atmospheric pollutants in Nanjing from 2014 to 2017图6 2014-2017年南京市大气污染物因子变化趋势 |
Fig. 7 Trends of the meteorological factors in Nanjing from 2014 to 2017图7 2014-2017年南京市气象因子变化趋势 |
Tab. 4 Multi-scale correlations between PM2.5 concentration and PM10, O3, MinT, NO2, and RH表4 PM2.5浓度与PM10、O3、MinT、NO2和RH的多尺度相关性 |
PM2.5与PM10 | PM2.5与O3 | PM2.5与MinT | PM2.5与NO2 | PM2.5与RH | |
---|---|---|---|---|---|
原始数据 | 0.917** | -0.065* | -0.343** | 0.618** | -0.254** |
天际尺度 | 0.892** | 0.271** | 0.236** | 0.529** | -0.039 |
月季尺度 | 0.939** | -0.431** | -0.628** | 0.715** | -0.560** |
注:**表示显著性在0.01水平; *表示显著性在0.05水平。 |
Fig. 8 Comparison of predicted values and observed values图8 预测结果对比 |
Table 5 Validity test of the PM2.5 concentration prediction models表5 PM2.5浓度预测模型有效性检验 |
MAE | MAPE/% | RMSE | R2 | |
---|---|---|---|---|
GRNN | 11.00 | 36.94 | 14.05 | 0.87 |
EEMD-GRNN | 8.37 | 27.56 | 11.56 | 0.91 |
改进EEMD-GRNN | 6.17 | 18.41 | 8.32 | 0.95 |
[1] |
[
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
[
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
[
|
[26] |
[
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
[
|
[33] |
[
|
[34] |
[
|
[35] |
[
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
[
|
[41] |
[
|
/
〈 | 〉 |