深圳市快递自提点的空间分布特征与影响因素
刘 玲(1996-),女,四川眉山人,硕士生,主要从事城市地理与犯罪地理研究。E-mail: 1101210821@qq.com |
收稿日期: 2019-03-12
要求修回日期: 2019-04-24
网络出版日期: 2019-08-25
基金资助
西北大学仲英青年学者支持计划(2016)项目资助()
版权
Spatial Distribution Characteristics and Influencing Factors of the Delivery Sites in Shenzhen
Received date: 2019-03-12
Request revised date: 2019-04-24
Online published: 2019-08-25
Supported by
Tang Scholar Program of Northwest University (2016)()
Copyright
随着信息技术的发展,电子商务的盛行推动着快递行业的迅猛发展,快递自提点成为人们日常生活的重要场所,从而成为城市地理与物流地理的重要研究对象。本文基于2018年4月深圳市菜鸟驿站和中国邮政速递物流站点的POI数据,综合运用文本分析、数理统计、空间分析方法,解析深圳市快递自提点的空间分布特征和影响因素。研究发现:① 快递自提点依托类型多样:由市场主导的菜鸟驿站主要依托专业的快递公司、便利店等;由政府主导的邮政站点一般设于中国邮政的分支服务网点;② 快递自提点服务对象种类繁多,二者都主要以服务社区为主,企业、工业园、酒店等为辅;③ 快递自提点的区位选择一般靠近服务对象的出入口,80%的快递自提点分布在距其最近出入口200 m范围内,邮政站点更接近服务对象;④ 快递自提点的空间分布不均衡,呈现“中西部多,东部少”的特点,沿“东-西”走向集聚分布,为多核集聚模式;⑤ 快递自提点的空间格局是区域经济发展水平、人口分布、交通便捷程度、土地利用类型等多因素综合作用的结果,最后探索了快递自提点选址与分布的综合影响机制。
刘玲 , 李钢 , 杨兰 , 薛淑艳 . 深圳市快递自提点的空间分布特征与影响因素[J]. 地球信息科学学报, 2019 , 21(8) : 1240 -1253 . DOI: 10.12082/dqxxkx.2019.190114
With the advancement of information technology, the prevalence of e-commerce is driving the rapid development of the express delivery industry. To solve the distribution problem of the "last kilometer logistics", delivery sites appeared in most cities of China. The delivery sites, including Cainiao Station and China Post, have become the important places that residents visit frequently in everyday life and become an important research topic of urban geography and logistics geography. Based on the point of interest (POI) data of the Cainiao Station and China Post in 10 municipal districts in Shenzhen, this study used text analysis, mathematical statistics, and spatial analysis to examine the organization form, location choice, spatial distribution, agglomeration mode, and influencing factors of the delivery sites in Shenzhen. Results showed that: (1) The delivery sites depend on different types. The Cainiao station is dominated by sole business and joint venture, which relies on professional express companies and convenience stores, etc. China Post is a state-owned enterprise led by the government, generally located in branch service outlets. (2) The delivery sites have a variety of service objects, and both of Cainiao Station and China Post mainly serve communities, supplemented by companies, industrial parks, and hotels. (3) The location of the delivery sites is as close as possible to the entrances and exits of the service objects. Most of the delivery sites are distributed within 200m from the entrances and exits of facilities, and China Post sites are much closer to the service objects. (4) The spatial distribution of the delivery sites is not balanced, more in the central and western regions yet less in the east. It is distributed in the "east-west" direction, with a multi-core agglomeration mode. (5) The spatial pattern of the delivery sites is a result of the combined effects of multiple factors including the level of regional economic development, population distribution, transportation convenience, land use type, and so on. The delivery sites are distributed on the urban residential land but their number is still small in the marginal residential areas. Their spatial relation presents a geographic-adjacent-based coordinated competition development trend. Our findings help explore the comprehensive impact mechanism of the location choice and distribution pattern of the two types of delivery sites, and indicate future prospects of research, including mining their detection function of urban growth and population distribution.
Key words: delivery sites; spatial distribution; influencing factors; POI; Shenzhen
图13 2018年深圳市快递自提点与道路关系图Fig. 13 Relationship between the delivery sites and roads in Shenzhen in 2018 |
表1 2018年深圳市快递自提点与路网密度的相关性Tab. 1 Correlation between delivery sites and road density in Shenzhen in 2018 |
路网密度/(km/km2) | 菜鸟驿站/个 | 邮政站点/个 | 所有站点/个 | ||
---|---|---|---|---|---|
路网密度/(km/km2) | 皮尔逊相关性 | 1 | 0.678* | 0.613 | 0.659* |
显著性(双尾) | 0 | 0.031 | 0.060 | 0.038 | |
菜鸟驿站/个 | 皮尔逊相关性 | 0.678* | 1 | 0.953** | 0.993** |
显著性(双尾) | 0.031 | 0 | 0 | 0 | |
邮政站点/个 | 皮尔逊相关性 | 0.613 | 0.953** | 1 | 0.983** |
显著性(双尾) | 0.060 | 0 | 0 | 0 | |
所有站点/个 | 皮尔逊相关性 | 0.659* | 0.993** | 0.983** | 1 |
显著性(双尾) | 0.038 | 0 | 0 | 0 |
注:*表示相关性在0.05层上显著(双尾);**表示相关性在0.01层上显著(双尾)。 |
[1] |
姚宇, 杨晓芳 . 电子商务环境下自提网点布局的研究[J]. 物流技术与应用, 2015,20(9):145-148.
[
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
谭如诗, 徐逸伦, 陈栋 , 等. 城市居民快递自提行为空间研究——以南京市城区菜鸟驿站为例[J]. 世界地理研究, 2016,25(5):111-120.
[
|
[9] |
黄涛 . 基于GIS的快递末端自提网点布局研究[D]. 西安:长安大学, 2017.
[
|
[10] |
张智, 肖作鹏 . 基于大数据的电商物流末端配送网点空间分布分析——以深圳市为例[J]. 城市观察, 2017,( 1):73-81.
[
|
[11] |
黄茜, 刘哲 . 基于双边市场的城市物流共同配送案例研究——以菜鸟驿站为例[J]. 物流科技, 2016,39(6):43-45.
[
|
[12] |
刘珍 . 高校校园物流模式探讨——以菜鸟驿站为例[J].现代商贸工业, 2017(29):42-43.
[
|
[13] |
李钢, 杨兰, 贺建雄 , 等. 基于POI数据的西安市快递自提点空间格局及空间关系研究——以菜鸟驿站为例[J]. 地理科学, 2018,38(12):2024-2030.
[
|
[14] |
李钢, 陈未雨, 杨兰 , 等. 武汉市快递自提点的空间格局与集聚模式研究[J]. 地理科学进展, 2019,38(3):407-416.
[
|
[15] |
[
|
[16] |
许留记, 龙瀛 . 基于兴趣点位置和名称的中国城市网络分析[J].北京规划建设, 2016(6):49-56.
[
|
[17] |
|
[18] |
|
[19] |
邹玮, 杨羽頔, 孙才志 . 基于分布动态法和空间计量法的环渤海区域经济格局演变研究[J]. 辽宁师范大学学报:自然科学版, 2016,39(1):111-120.
[
|
[20] |
|
[21] |
|
[22] |
|
[23] |
张松林, 张昆 . 全局空间自相关Moran指数和G系数对比研究[J]. 中山大学学报:自然科学版, 2007,46(4):93-97.
[
|
[24] |
曾国军, 陆汝瑞 . 跨国饮食企业的空间分布及其影响因素——星巴克在广州[J]. 人文地理, 2017,32(6):47-55.
[
|
[25] |
梁贺明, 李琦, 侯俊雄 , 等. 北京市人口密度空间分布及其尺度特性研究[J]. 地理信息世界, 2016,23(6):31-38.
[
|
[26] |
|
[27] |
深圳市统计局. 深圳统计年鉴(2018)[M]. 北京: 中国统计出版社, 2018.
[ Shenzhen Statistics Bureau. Shenzhen Statistical Yearbook ( 2018)[M]. Beijing: China Statistics Press, 2018. ]
|
[28] |
陈义友, 张锦, 罗建强 . 顾客选择行为对自提点选址的影响研究[J]. 中国管理科学, 2017,25(5):135-144.
[
|
/
〈 | 〉 |