青海湖流域植被盖度时空变化研究
高黎明(1986-),女,博士,副教授,主要从事生态水文过程研究。E-mail: gaogaotahj@163.com |
收稿日期: 2018-12-28
要求修回日期: 2019-05-20
网络出版日期: 2019-09-24
基金资助
青海省自然科学基金项目(2017-ZJ-951Q)
国家自然科学基金项目(41705139)
版权
Spatiotemporal Dynamics of the Vegetation Coverage in Qinghai Lake Basin
Received date: 2018-12-28
Request revised date: 2019-05-20
Online published: 2019-09-24
Supported by
National Natural Science Foundation of Qinghai(2017-ZJ-951Q)
National Natural Science Foundation of China(41705139)
Copyright
高寒区植被变化一直是气候和生态学领域关注的热点问题。本研究基于MODIS NDVI数据计算的植被覆盖度数据和高分辨率气象数据,分析了青海湖流域2001-2017年植被覆盖度分布格局及动态变化,探讨了其对气候变化、人类活动和冻土退化的响应。结果表明:① 近十几年青海湖流域植被覆盖度整体表现为增加趋势,不同植被类型增幅存在差异性,草地增幅最大,达到6.1%/10a,其它植被类型增幅在2%~3%/10a之间;② 流域局部地区仍存在植被退化现象,研究期植被退化面积表现为先增加后减小的变化趋势。2006-2011年重度退化区集中在青海湖东岸,2011-2017年重度退化区集中在流域的西北部,这些区域是青海湖流域荒漠分布区,植被覆盖度较低,是今后生态恢复需重点关注的区域;③ 气候变化是流域植被覆盖度变化的主导因素,气候变化对青海湖流域主要植被类型覆盖度变化的贡献率为84.21%,对草原、草甸和灌丛植被覆盖度变化的贡献率分别为81.84%、87.47%和75.96%;④ 人类活动对流域主要植被类型覆盖度变化的贡献率为15.79%,对草原、草甸和灌丛植被覆盖度变化的贡献率分别为18.16%、12.53%和24.04%,环青海湖地区人类活动对植被恢复有促进效应,在青海湖流域北部部分地区人类活动的破坏力度仍大于建设力度;⑤ 冻土退化对青海湖流域草甸和灌丛植被覆盖度变化影响很小,主要影响草原植被覆盖度变化,冻土退化造成草原植被覆盖度增长速率减小了1.2%/10a。
高黎明 , 张乐乐 . 青海湖流域植被盖度时空变化研究[J]. 地球信息科学学报, 2019 , 21(9) : 1318 -1329 . DOI: 10.12082/dqxxkx.2019.180696
Alpine vegetation change has been a hot topic for climate and ecology related studies. Based on the vegetation coverage data derived from MODIS NDVI and high resolution meteorological data, the spatial pattern and temporal changes of the vegetation coverage in Qinghai Lake basin during 2001-2017 and its response to climate change, human activity and permafrost degradation were analyzed in this study. Results showed that the vegetation coverage of Qinghai Lake basin presented an increasing trend in the last decade. There were differences among different vegetation types, with the largest increase of 6.1%/10a in grassland and 2%~3% in other vegetation types, indicating that grasslands are highly vulnerable to climate change and human activities. Vegetation degradation occurred in some areas of the basin, the area of vegetation degradation increased first and then decreased during the study period. The areas of severe degradation were concentrated in the east coast of Qinghai Lake during 2006-2011, and in the northwest of the basin during 2011-2017. These are the desert areas with low vegetation coverage in Qinghai Lake basin, key for future ecological restoration. Climate change is the leading factor of vegetation coverage change in the watershed, contributing 84.21% to vegetation coverage change of main vegetation types in the Qinghai Lake basin, 81.84%, 87.47% and 75.96% to vegetation coverage change of grassland, meadow and shrub, respectively. At different altitudes, air temperature and precipitation have different influences on vegetation coverage change. Precipitation was mainly positively correlated with vegetation coverage change when the altitude is below 4000 m, but mainly negatively correlated while altitude is above 4000 m. With the increase of altitude, the areas where air temperature is positively correlated with vegetation coverage decrease, while the areas where air temperature is negatively correlated increase. The contribution rate of human activities to vegetation coverage change of major vegetation types in the watershed was 15.79%, and that of grassland, meadow and shrub was 18.16%, 12.53% and 24.04%, respectively. Human activities in the area around Qinghai Lake had a promoting effect on vegetation restoration, but in the northern part of Qinghai Lake basin, human activities were still more destructive than construction. The degradation of permafrost had little effect on the change of vegetation coverage of meadow and shrub in Qinghai Lake basin, mainly affecting the change of grassland vegetation coverage. The growth rate of grassland vegetation coverage decreased by 1.2%/10a due to the degradation of permafrost. However, the interaction mechanism between permafrost, hydrology and vegetation is complex, it is hoped that this gap will be filled later.
Tab. 1 Research data and data sources |
数据 | 数据来源 |
---|---|
MODIS NDVI数据(2001.01-2017.12) | 美国国家航天局(http://ladsweb.nascom.nasa.gov/) |
1979-2015年中国高分辨率气象数据 | 寒区旱区科学数据中心(http://westdc.westgis.ac.cn/) |
90 m分辨率DEM数据 | 地理空间数据云(http://www.gscloud.cn/) |
青藏高原冻土分布数据[30] | The Cryosphere杂志(https://www.the-cryosphere.net/) |
2000年植被类型数据(1:100万) | 资源环境数据云平台(http://www.resdc.cn/) |
图4 青海湖流域4个时期植被退化空间格局Fig. 4 Spatial pattern of the vegetation coverage dynamics in Qinghai Lake basin during four periods |
Tab. 2 Statistics of the vegetation coverage dynamics in Qinghai Lake basin during four periods |
植被退化等级 | 2001-2006年 | 2006-2011年 | 2011-2017年 | 2001-2017年 | ||||
---|---|---|---|---|---|---|---|---|
面积/km2 | 比重/% | 面积/km2 | 比重/% | 面积/km2 | 比重/% | 面积/km2 | 比重/% | |
改善 | 11 845.0 | 49.0 | 5809.8 | 23.8 | 8836.8 | 36.2 | 13 817.5 | 56.8 |
变化不明显 | 9967.0 | 41.2 | 13 751.3 | 56.5 | 12 849.0 | 52.6 | 8670.8 | 35.6 |
轻度退化 | 1341.7 | 5.6 | 3037.5 | 12.5 | 1546.7 | 6.3 | 1132.8 | 4.7 |
中度退化 | 503.8 | 2.1 | 885.0 | 3.6 | 504.8 | 2.1 | 371.0 | 1.5 |
重度退化 | 511.8 | 2.1 | 887.3 | 3.6 | 694.3 | 2.8 | 352.0 | 1.4 |
表3 基于气候条件的FVC模拟模型Tab. 3 FVC simulation model based on climate factors |
植被类型 | 回归模型 | R2 | F | 显著性水平 |
---|---|---|---|---|
草原 | FVC=0.72-0.22T1+4.60T7-5.58T8+0.90×T12-0.39P4+0.13×P6+0.84P7-0.28P8 | 0.50 | 2144.40 | P<0.005 |
草甸 | FVC=0.63+0.36T1-0.10T7-4.34T11+4.20×T12-0.18P4+0.10×P6+0.06P7-0.16P8 | 0.65 | 5355.40 | P<0.005 |
灌丛 | FVC=0.68+0.65T3+4.45T7-7.23T8+2.12×T9-0.24P3-0.02×P5+0.61P7-0.30P8 | 0.44 | 530.53 | P<0.005 |
[1] |
孙红雨, 李兵 . 中国地表植被覆盖变化及其与气候因子关系[J]. 遥感学报, 1998,2(3):204-210.
[
|
[2] |
李新鸽, 朱连奇, 陈超男 . 2000-2015年河南省植被NDVI时空变化特征分析[J]. 河南大学学报(自然科学版), 2018,48(5):554-564.
[
|
[3] |
候勇, 陈文龙, 钟成 . 内蒙古地区植被覆盖度时空变化遥感监测[J]. 东北林业大学学报, 2018,46(11):35-40.
[
|
[4] |
黄林峰, 田鹏举, 帅士章 , 等. 2000-2016年赤水河流域植被生态质量变化分析[J]. 中低纬山地气象, 2018,42(5):20-24.
[
|
[5] |
熊俊楠, 彭超, 程维明 , 等. 基于MODIS-NDVI的云南省植被覆盖度变化分析[J]. 地球信息科学学报, 2018,20(12):1830-1840.
[
|
[6] |
韩红珠, 白建军, 张波 , 等. 基于MODIS时序的陕西省植被物候时空变化特征分析[J]. 国土资源遥感, 2018,30(4):125-131.
[
|
[7] |
张学玲, 张莹, 牛德奎 , 等. 基于TM NDVI的武功山山地草甸植被覆盖度时空变化研究[J]. 生态学报, 2018,38(7):2414-2424.
[
|
[8] |
|
[9] |
|
[10] |
孙庆龄, 李宝林, 许丽丽 , 等. 2000-2013年三江源植被NDVI变化趋势及影响因素分析[J]. 地球信息科学学报, 2016,18(12):1707-1716.
[
|
[11] |
何金苹, 徐长春, 李晓菲 , 等. 开都—孔雀河流域NDVI动态变化及其与气温和降水的联系[J]. 水土保持研究, 2018,25(6):329-334.
[
|
[12] |
|
[13] |
邓兴耀, 姚俊强, 刘志辉 . 基于GIMMS NDVI的中亚干旱区植被覆盖时空变化[J]. 干旱区研究, 2017,34(1):10-19.
[
|
[14] |
赵明伟, 王妮, 施慧慧 , 等. 2001 -2015年间我国陆地植被覆盖度时空变化及驱动力分析[J]. 干旱区地理, 2019(2):324-331.
[
|
[15] |
卓嘎, 陈思蓉, 周兵 . 青藏高原植被覆盖时空变化及其对气候因子的响应[J]. 生态学报, 2018,38(9):3208-3218.
[
|
[16] |
张亮, 丁明军, 张华敏 , 等. 1982-2015年长江流域植被覆盖度时空变化分析[J]. 自然资源学报, 2018,33(12):30-43.
[
|
[17] |
高黎明, 张乐乐, 陈克龙 . 青海湖流域湿地小气候特征分析[J]. 干旱区研究, 2019,36(1):186-192.
[
|
[18] |
张乐乐, 高黎明, 陈克龙 . 青海湖流域瓦颜山湿地辐射平衡和地表反照率变化特征[J]. 冰川冻土, 2018(6):1216-1222.
[
|
[19] |
张法伟, 郭竹筠, 李以康 , 等. 青海湖芨芨草干草原植被退化对土壤温湿特征的影响[J]. 干旱区研究, 2013,30(2):219-225.
[
|
[20] |
刘淑丽, 林丽, 张法伟 , 等. 放牧季节及退化程度对高寒草甸土壤有机碳的影响[J]. 草业科学, 2016,33(1):11-18.
[
|
[21] |
李以康, 欧阳经政, 林丽 , 等. 高寒草甸植被退化过程中生物土壤结皮演变特征[J]. 生态学杂志, 2015,34(8):2238-2244.
[
|
[22] |
潘虹, 顾海敏, 史建桥 , 等. 基于RS和GIS的青海湖流域植被覆盖度变化与驱动因子研究[J]. 资源开发与市场, 2016,32(7):827-831.
[
|
[23] |
|
[24] |
骆成凤, 许长军, 游浩妍 , 等. 2000-2010年青海湖流域草地退化状况时空分析[J]. 生态学报, 2013,33(14):4450-4459.
[
|
[25] |
张明, 崔军, 曹学章 . 青海湖流域草地退化时空分布特征[J]. 生态与农村环境学报, 2017,33(5):44-50.
[
|
[26] |
王佃来, 刘文萍, 黄心渊 . 基于Sen+Mann-Kendall的北京植被变化趋势分析[J]. 计算机工程与应用, 2013,49(5):13-17.
[
|
[27] |
何杰, 阳坤 . 中国区域高时空分辨率地面气象要素驱动数据集[OL]. 寒区旱区科学数据中心, 2011.
[
|
[28] |
|
[29] |
杜娟, 文莉娟, 苏东生 . 三套再分析资料在青藏高原湖泊模拟研究中的适用性分析[J]. 高原气象, 2019,38(1):101-113.
[
|
[30] |
|
[31] |
王宁, 陈民, 郝多虎 , 等. 基于NDVI估算植被覆盖度的研究—以滁州市为例[J]. 测绘与空间地理信息, 2013,36(5):51-54,57.
[
|
[32] |
|
[33] |
中华人民共和国国家质量监督检验检疫总局. 中华人民共和国国家标准:天然草地退化、沙化、盐渍化的分级指标[S]. 北京: 中国标准出版社, 2004.
[ General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. National Standard of the People's Republic of China: Parameters for Degradation, Sandification and Salification of Rangelands[S]. Beijing: Standards Press of China, 2004. ]
|
[34] |
李辉霞, 刘国华, 傅伯杰 . 基于NDVI的三江源地区植被生长对气候变化和人类活动的响应研究[J]. 生态学报, 2011,31(19):5495-5504.
[
|
[35] |
伊万娟, 李小雁, 崔步礼 , 等. 青海湖流域气候变化及其对湖水位的影响[J]. 干旱气象, 2010,28(4):375-383.
[
|
[36] |
王志鹏, 张宪洲, 何永涛 , 等. 2000-2015年青藏高原草地归一化植被指数对降水变化的响应[J]. 应用生态学报, 2018,29(1):75-83.
[
|
[37] |
梁四海, 万力, 李志明 , 等. 黄河源区冻土对植被的影响[J]. 冰川冻土, 2007,29(1):45-52.
[
|
[38] |
冯雨晴, 梁四海, 吴青柏 , 等. 冻土退化过程中植被覆盖度的变化研究[J]. 北京师范大学学报(自然科学版), 2016,52(3):311-316.
[
|
/
〈 | 〉 |