基于SWAT模型和多源DEM数据的流域水系提取精度分析
马永明(1992-),男,云南文山人,硕士生,主要从事流域环境演变研究。E-mail:mayongming5685@163.com |
收稿日期: 2019-01-22
要求修回日期: 2019-06-12
网络出版日期: 2019-10-29
基金资助
国家自然科学基金项目(41201429)
生物地质与环境地质国家重点实验室自主课题(GKZ17Y651)
中央高校基本科研业务费“地学长江计划”核心项目(CUGCJ1808)
版权
Accuracy Analysis of Watershed System Extraction based on the SWAT Model and Multi-Source DEM Data
Received date: 2019-01-22
Request revised date: 2019-06-12
Online published: 2019-10-29
Supported by
National Natural Science Foundation of China(41201429)
The National Key Laboratory of Biogeology and Environmental Geology(GKZ17Y651)
The Central University's Basic Scie.pngic Research Business Fee "Geoscience Yangtze River Plan" Core Project(CUGCJ1808)
Copyright
流域水系是研究水文水资源、地貌演化和生态环境及水土治理等的基础数据,高精度的水系提取对流域研究十分重要。本文以空间分辨率均为30 m的 AW3D30 DSM、SRTM1 DEM和ASTER GDEM2数字高程模型作为基本的地形数据,基于SWAT模型提取犟河流域水系,通过河网“套合差”、水系相对误差、Google Map水文数据及蓝线河网对提取结果进行误差分析与综合评价,探讨河道剖面和地形特征对水系提取精度的影响。结果表明:① 集水面积阈值是决定河网水系提取精度的关键参数,阈值越大,提取的河网密度越小,反之提取的河网密度越大;② 基于河网密度与集水阈值二阶导数的幂函数与直线相切的数学求值方法确定流域最佳集水面积阈值,能避免最佳集水阈值取值的主观性,提取的河网水系与实际河道相符;③ AW3D30 DSM数据提取的流域河网水系与Google Map高分辨率影像的水系偏差最小,且AW3D30 DSM数据提取的水系与蓝线河网的河网“套合差”和水系相对误差值均最低,能真实反映中低山丘陵山区流域水系发育的疏密程度,吻合度最好;④ 多源DEM数据提取结果均显示为河床比降大和横剖面曲线为窄深式的“V”形河谷提取的水系精度高于河床比降小和横剖面曲线为 “碟”形河谷的提取精度;⑤ AW3D30 DSM数据的地形起伏和坡度标准差最大,有利于山区河网水系的提取。因此,基于SWAT模型和AW3D30 DSM数据提取的山区流域水系可最大限度反映流域水系的真实情况,精度最高,此方法和数据源可应用于中低山丘陵山区流域的水系提取研究。
马永明 , 张利华 , 张康 , 朱志儒 , 吴宗凡 . 基于SWAT模型和多源DEM数据的流域水系提取精度分析[J]. 地球信息科学学报, 2019 , 21(10) : 1527 -1537 . DOI: 10.12082/dqxxkx.2019.190039
Distributions of river systems are the basic data for studying hydrology and water resources, landform evolution, ecological environment, and water and soil management in a basin; so, high-precision extraction of river systems is very important for watershed research. Different digital elevation models (DEMs) are the basic data to extract river systems and delineate watershed. Taking Jiang River Basin in western Hubei Province of China as the study area, this paper extracted the river systems and discussed the extraction precision using different elevation model data including AW3D30 DSM, SRTM1 DEM and ASTER GDEM2 with a spatial resolution of 30 m. The slope flow simulation algorithm and ArcSWAT model were used to extract the river systems, and the relationship between catchment area threshold and stream network density were examined. Meanwhile, the match error and relative error of river system extraction, Google map hydrological data, and the blue line of stream network were used to evaluate the extraction accuracy. Results show that: (1) The threshold of catchment area is the key parameter to determine the accuracy of extracting stream network. The relationship shows that the larger the threshold, the smaller the density of the extracted stream network. The change rate of stream network density is equal to the change rate of catchment area threshold. The inflexion point which corresponds to the optimal catchment area threshold is determined by the power function of the second derivative tangent to the line, hence the optimal threshold of catchment area for AW3D30 DSM, SRTM1 DEM, and ASTER GDEM2 is 70.2 ha, 60.2 ha, and 50.8 ha respectively. (2) The matching error and relative error of the extracted stream network system from AW3D30 DSM data are the lowest and can accord best with the actual river system. (3) The narrower and deeper riverbed profile with a “V” shape has a high extracted precision for the DEMs. (4) The extraction of stream network density, drainage area and river length from AW3D30 DSM is very closer to real value, and can truly reflect the development degree of the river system in the study basin. (5) The topographic fluctuation and slope standard deviation of AW3D30 DSM data are the largest which is helpful to extract the river system in study area. Our findings indicate that, in general, the AW3D30 DSM data is more suitable for extracting river systems in montane basins.
表1 犟河流域3种数据源的河网套合差结果Tab. 1 River network fit results of the three data sources in the Jiang River Basin |
提取方法 | 数据源 | 细碎面积/km2 | 流域面积/km2 | 河网套合差/% |
---|---|---|---|---|
AW3D30 DSM | 1.30 | 315.02 | 0.412 | |
SWAT Model | SRTM1 DEM | 8.31 | 314.73 | 2.641 |
ASTER GDEM2 | 11.95 | 317.35 | 3.767 |
图4 犟河流域集水面积阈值与河网密度二阶导数的关系Fig. 4 Relationship between catchment area threshold and the second derivative of river network density in the Jiang River Basin |
表2 犟河流域数字河网特征对比Tab. 2 Characteristics comparison of the three extracted digital river networks in Jiang River Basin |
数据源 | 集水面积 阈值/hm2 | 数字流域 面积/km2 | 面积相对 误差/% | 河网密度 /(km/km2) | 水系 /km | 水系相对 误差/% | 与实际河网 吻合度 |
---|---|---|---|---|---|---|---|
AW3D30 DSM | 55.80 | 315.02 | -0.03 | 1.06 | 334.63 | 1.32 | 最好 |
SRTM1 DEM | 60.20 | 314.73 | -0.12 | 0.98 | 307.73 | -6.82 | 较好 |
ASTER GDEM2 | 70.20 | 317.35 | 0.71 | 0.93 | 295.13 | -10.64 | 一般 |
蓝线河网 | … | 315.12 | … | 1.05 | 330.26 | … | … |
表3 犟河流域3种DEM的地形形态特征Tab. 3 Topographic features of the three DEM types in Jiang River Basin |
数据源 | 集水面积阈值/hm2 | 最大坡度/° | 平均坡度/° | 坡度标准差 | 最大高程/m | 最小高程/m | 平均高程/m | 起伏度/m |
---|---|---|---|---|---|---|---|---|
AW3D30 DSM | 55.80 | 68.80 | 25.78 | 10.82 | 1441 | 139 | 771.32 | 1302 |
SRTM1 DEM | 60.20 | 66.83 | 21.69 | 9.32 | 1426 | 151 | 767.28 | 1275 |
ASTER GDEM2 | 70.20 | 67.60 | 22.49 | 10.73 | 1432 | 136 | 766.17 | 1296 |
[1] |
|
[2] |
汤国安 . 我国数字高程模型与数字地形分析研究进展[J]. 地理学报, 2014,69(9):1305-1325.
[
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
吴险峰, 王中根, 刘昌明 , 等. 基于DEM的数字降水径流模型在——黄河小花间的应用[J]. 地理学报, 2002,57(6):671-678.
[
|
[14] |
李照会, 郭良, 刘荣华 , 等. 基于DEM数字河网提取时集水面积阈值与河源密度关系的研究[J]. 地球信息科学学报, 2018,20(9):40-47.
[
|
[15] |
宋晓猛, 张建云, 占车生 . 基于DEM的数字流域特征提取研究进展[J]. 地理科学进展, 2013,32(1):31-40.
[
|
[16] |
|
[17] |
|
[18] |
于洋, 王先彦, 李一泉 , 等. 长江源地区通天河段水系格局演化与构造活动的关系[J]. 地理学报, 2018,73(7):1338-1351.
[
|
[19] |
薛凯凯, 熊礼阳, 祝士杰 , 等. 基于DEM的黄土崾岘提取及其地形特征分析[J]. 地球信息科学学报, 2018,20(12):1710-1720.
[
|
[20] |
陈萍 . 十堰市犟河流域综合治理及成效分析[A].中国环境科学学会.2017中国环境科学学会科学与技术年会论文集(第二卷)[C]. 中国环境科学学会:中国环境科学学会, 2017: 6.
[
|
[21] |
王建虹 . 犟河流域水质评价及保护对策[J]. 郧阳师范高等专科学校学报, 2016,36(6):15-20.
[
|
[22] |
JAXA, “Precise global digital 3D map "ALOS World 3D"Homepage, https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm.
|
[23] |
|
[24] |
王中根, 刘昌明, 黄友波 . SWAT模型的原理、结构及应用研究[J]. 地理科学进展, 2003,22(1):79-86.
[
|
[25] |
孔凡哲, 李莉莉 . 利用DEM提取河网时集水面积阈值的确定[J]. 水电能源科学, 2005(4):65-67.
[
|
[26] |
李天昊, 王侃, 程军蕊 , 等. 基于轮廓不同的DEM对宁波市姚江流域平原河网的提取研究[J]. 水土保持通报, 2017,37(4):166-171,178.
[
|
[27] |
武文娇, 章诗芳, 赵尚民 . SRTM1 DEM与ASTER GDEM V2数据的对比分析[J]. 地球信息科学学报, 2017,19(8):1108-1115.
[
|
[28] |
|
[29] |
吴险峰, 刘昌明, 王中根 . 栅格DEM的水平分辨率对流域特征的影响分析[J]. 自然资源学报, 2003,18(2):148-154.
[
|
[30] |
闾国年, 钱亚东, 陈钟明 . 基于栅格数字高程模型提取特征地貌技术研究[J]. 地理学报, 1998,53(6):562-570.
[
|
[31] |
李炳元, 潘保田, 韩嘉福 . 中国陆地基本地貌类型及其划分指标探讨[J]. 第四纪研究, 2008(4):535-543.
[
|
/
〈 | 〉 |