基于信息熵的中国自然疫源性疾病分布特征研究
丁晓彤(1995-),女,河南濮阳县,硕士生,主要从事地图学研究。E-mail: dingxt.16s@igsnrr.ac.cn |
收稿日期: 2019-02-11
要求修回日期: 2019-06-27
网络出版日期: 2019-12-25
基金资助
国家科技基础性工作专项(2013FY114600)
版权
Research on the Distribution of Natural Focus Diseases based on Information Entropy
Received date: 2019-02-11
Request revised date: 2019-06-27
Online published: 2019-12-25
Supported by
Science & Technology Basic Research Program of China(2013FY114600)
Copyright
中国目前发现有43种自然疫源性疾病,其中鼠疫、人禽流感、疟疾、登革热等14种被列为国家法定传染病,对中国人民生命健康造成了很大的威胁。为了探讨中国自然疫源性疾病发病数量均衡/不均衡的区域分布规律,本文运用Shannon信息熵理论和空间自相关方法,基于2004-2015年14种自然疫源性疾病的发病数,对中国自然疫源性疾病进行了分析。研究结果表明:① 中国自然疫源性疾病发病数量均衡/不均衡的区域在空间上具有明显的西北-东南分异特征,并具有显著的空间自相关关系,高值聚集区和低值聚集区主要分布在以河北-云南连线上山脉分界线的两侧;② 自然因素是影响自然疫源性疾病发病均衡程度的主要因素,在温暖潮湿(即温度适宜、水分充足)的地区更容易发生多种疾病,疾病发病数量相近;在特定牲畜为主或特定蚊虫流行地区更容易发生单种疾病,疾病发病数量不均衡;③ 我国发病总数高的区域往往是因为单种疾病极其严重导致,而信息熵高的地区往往存在多种疾病发生,这两类地区在自然疫源性疾病防治上,需要根据地区特点采取不同措施。
丁晓彤 , 余卓渊 , 宋海慧 , 谢云鹏 , 吕可晶 . 基于信息熵的中国自然疫源性疾病分布特征研究[J]. 地球信息科学学报, 2019 , 21(12) : 1877 -1887 . DOI: 10.12082/dqxxkx.2019.190109
To date, there have been 43 types of natural focus diseases reported in China, 14 of which are officially-recognized infectious diseases including plague, human-avian influenza, malaria, and dengue fever. Most natural focus diseases are characterized by strong pathogenicity, serious clinical behavior, high mortality rate, and high incidence rate. In 2008, the fever with thrombocytopenia syndrome emerged in China, and dengue fever broke out in Guangdong province in 2014. Natural focus diseases are great threats to Chinese, epsically in the context that there is currently no comprehensive method for acquiring the distribution characteristics of multiple diseases. The equilibrium degree in a region reflects the structure of the diseases in that region, and the distribution of the degree can help understand the distribution of multiple diseases. The paper used the quantity information of 14 natural focus diseases in China from 2004 to 2015, and applied Shannon information entropy theory to explore the spatial distribution pattern of the equilibrium degree of multiple natural focus diseases. Spatial autocorrelation analysis was adopted to detect the high incidence areas and low incidence areas. Finally, based on Pearson correlation coefficient analysis, the correlations among elevation, temperature, precipitation, NDVI, population, density of population, GDP, and information entropy were quantified. Results show that: (1) Anhui Province and Inner Mongolia Autonomous Region had the highest number of natural focus diseases. The information entropy of natural focus diseases in mainland China showed obvious northwest-southeast differentiation characteristics. The high-value aggregation areas and low-value aggregation areas were mainly distributed on the two sides of the boundary line of the mountains from Hebei Province to Yunnan Province. (2) Compared with social factors, natural factors were the main factors affecting the equilibrium degree of natural focus diseases. It was more prone to a variety of diseases in warm and humid areas with appropriate temperatures and adequate moisture. Single disease was more likely to occur in specific livestock or specific mosquitoes areas. (3) Areas with a high total number of cases usually resulted from a large number of cases of one disease, and these areas were less equilibrated, while areas with high information entropy usually resulted from many concentrated outbreaks of diseases. Our findings help understand the distribution characteristics of natural focus diseases in China, and demonstrate the potential of applying information entropy to analyze the prevention and control measures of natural focus diseases.
图2 2004-2015年我国自然疫源性疾病发病人数分布注:该图基于自然资源部标准地图服务网站下载的审图号为GS(2008)1371的标准地图制作,底图无修改。由于数据获取困难,本次研究不包括港澳台地区数据。 Fig. 2 Spatial distribution of the number of natural focus diseases in China from 2004 to 2015 |
表1 2004-2015年我国不同地区的部分自然疫源性疾病构成Tab. 1 Topfive natural focus diseases in different regions of China from 2004 to 2015 |
地区 | 第一名 | 第二名 | 第三名 | 第四名 | 第五名 |
---|---|---|---|---|---|
华北地区 | 布鲁氏菌病 | 出血热 | 斑疹伤寒 | 狂犬病 | 乙脑 |
东北地区 | 布鲁氏菌病 | 出血热 | 斑疹伤寒 | 疟疾 | 恙虫病 |
华东地区 | 疟疾 | 出血热 | 血吸虫病 | 恙虫病 | 布鲁氏菌病 |
华中地区 | 血吸虫病 | 疟疾 | 布鲁氏菌病 | 出血热 | 乙脑 |
华南地区 | 登革热 | 疟疾 | 狂犬病 | 出血热 | 斑疹伤寒 |
西南地区 | 疟疾 | 乙脑 | 斑疹伤寒 | 包虫病 | 狂犬病 |
表2 2004-2015年我国自然疫源性疾病信息熵与影响因素之间的Pearson相关系数矩阵Tab. 2 Pearson correlationmatrix of the information entropy and impact factors from 2004 to 2015 |
R | 高程 | 气温 | 降水 | NDVI | 人口数量 | 人口密度 | GDP |
---|---|---|---|---|---|---|---|
气温 | -0.306** | ||||||
降水 | -0.300** | 0.860** | |||||
NDVI | -0.442** | 0.260** | 0.354** | ||||
人口数量 | 0.527** | -0.261** | -0.278** | -0.403** | |||
人口密度 | -0.167** | -0.238** | -0.181** | -0.204** | -0.084** | ||
GDP | 0.259** | -0.005 | -0.041* | -0.160** | 0.612** | -0.037 | |
信息熵 | -0.391** | 0.463** | 0.424** | 0.298** | -0.295** | 0.100** | 0.181** |
注:**表示在0.01级别(双尾)相关性显著;*表示在0.05级别(双尾)相关性显著。 |
[1] |
张启恩 . 我国重要自然疫源地与自然疫源性疾病[M]. 沈阳: 辽宁科学技术出版社, 2003.
[
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
方立群, 曹务春 . 3S技术在自然疫源性疾病中的应用及发展前景[J]. 中国人兽共患病杂志, 2004(9):807-810.
[
|
[9] |
刘建民 . 我国疾病预防控制工作的现状与今后的发展——访卫生部疾病控制司司长齐小秋[J]. 中国健康教育, 2004(1):6-8.
[
|
[10] |
李一凡, 王卷乐, 高孟绪 . 自然疫源性疾病地理环境因子探测及风险预测研究综述[J]. 地理科学进展, 2015,34(7):926-935.
[
|
[11] |
吴晓旭, 田怀玉, 周森 , 等. 全球变化对人类传染病发生与传播的影响[J]. 中国科学:地球科学, 2013,43(11):1743-1759.
[
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
张湘雪, 王丽, 尹礼唱 , 等. 京津唐地区HFMD时空变异分析与影响因子探测[J]. 地球信息科学学报, 2019,21(3):398-406.
[
|
[20] |
郑斓, 任红艳, 施润和 , 等. 珠江三角洲地区登革热流行风险空间模拟与预测[J]. 地球信息科学学报, 2019,21(3):407-416.
[
|
[21] |
|
[22] |
熊晨皓, 赵国平, 兰晓霞 , 等. 1958-2013年我国自然疫源性疾病的流行分析[J]. 中国人兽共患病学报, 2015,31(2):169-173.
[
|
[23] |
许华茹, 李战, 徐淑慧 , 等. 2004-2013年济南市自然疫源性疾病流行病学特征分析[J]. 中国病原生物学杂志, 2016(1):60-64.
|
[24] |
霍爱梅, 赵达生, 方立群 , 等. 华北地区自然疫源性疾病的分布及其与气象条件的关系[J]. 中国病原生物学杂志, 2011(1):5-7.
[
|
[25] |
曹务春 . 中国自然疫源性疾病流行病学图集[M]. 北京: 科学出版社, 2019.
[
|
[26] |
张登兵, 刘思峰 . 熵与系统有序性研究综述[J]. 数学的实践与认识, 2008,38(24):200-206.
[
|
[27] |
|
[28] |
张亚妮, 范中和 . 物理熵与信息熵的辩证统一[J]. 宝鸡文理学院学报:自然科学版, 2002,22(2):145-147.
[
|
[29] |
陈彦光, 刘明华 . 城市土地利用结构的熵值定律[J]. 人文地理, 2001,16(4):20-24.
[
|
[30] |
王宗明, 张柏, 黄素军 , 等. 基于GIS和信息熵的松嫩平原土地利用结构演化分析——兼论系统无序度、复杂性与多样性[J]. 土壤与作物, 2005,21(3):196-200.
[
|
[31] |
国务院人口普查办公室. 中国2010年人口普查分县资料[M]. 北京: 中国统计出版社, 2012.
[ Population Census Office under the State Council. Tabulation on the 2010 population censue of the people's republic of china by county[M]. Beijing: China Statistics Press, 2012. ]
|
[32] |
焦玉萌, 方强, 谢旻 , 等. 2006-2010年安徽省疟疾流行时空分布特征[J]. 蚌埠医学院学报, 2013,38(7):876-878.
[
|
/
〈 | 〉 |