阴影消除植被指数(SEVI)去除地形本影和落影干扰的性能评估与应用
江 洪(1975-),男,福建永安人,博士,副研究员,主要从事环境遥感、信息管理研究。E-mail: jh910@fzu.edu.cn |
收稿日期: 2019-07-30
要求修回日期: 2019-10-10
网络出版日期: 2019-12-25
基金资助
福建省自然科学基金项目(2017J01658)
国家重点研发计划项目子课题(2017YFB0504203)
版权
Shadow-Eliminated Vegetation Index (SEVI) for Removing Terrain Shadow Effect : Evaluation and Application
Received date: 2019-07-30
Request revised date: 2019-10-10
Online published: 2019-12-25
Supported by
Natural Science Foundation of Fujian Province, China(2017J01658)
National Key Research and Development Program of China(2017YFB0504203)
Copyright
地形校正是崎岖山区遥感图像预处理的关键步骤。为了评估基于DEM数据的经验校正模型、山地辐射传输模型和波段组合优化计算模型在去除地形阴影效应方面的性能,并将其应用于福州市植被覆盖监测,本文采用C模型(和SCS+C模型)、6S+C模型和阴影消除植被指数(SEVI)进行评估、比较。采用1999年和2014年两期Landsat 5 TM卫星数据和相关的 30 m ASTER GDEM V2高程数据,分别计算了C校正(和SCS+C校正)和6S+C校正后的归一化植被指数(NDVI)和比值植被指数(RVI)以及基于表观反射率数据的SEVI。通过目视比较、光谱特征比较以及太阳入射角余弦值(cos i)与植被指数的线性回归分析,可以看出C模型和SCS+C模型对本影具有较好的校正效果,但对落影的校正效果欠佳。NDVI和RVI的本影与邻近无阴影阳坡的相对误差分别从71.64%、52.57%降至4.80%、6.43%(C模型)和0.50%、9.94%(SCS + C模型),而落影与邻近无阴影阳坡的相对误差分别从62.01%、47.57%降至31.05%、24.40%(C模型)和33.42%、16.01%(SCS + C模型)。在NDVI的落影校正效果上,6S+C模型比C模型和SCS+C模型有一定的提升,本影与邻近无阴影阳坡之间的相对误差为8.63%,落影与邻近无阴影阳坡之间的相对误差为14.27%。而SEVI在消除本影和落影方面整体效果更好,本影和落影与邻近无阴影阳坡的相对误差分别为9.86%和10.53%。最后,基于SEVI对福州市1999-2014年的植被覆盖变化进行了监测。监测结果表明: ① 1999-2014年植被覆盖增加了893.61 km 2,植被增加区域主要分布在海拔250~1250 m范围内;② SEVI均值在坡度40°附近达到峰值。
关键词: 阴影消除植被指数(SEVI); 本影; 落影; 地形校正模型; 植被监测; Landsat 5 TM; NDVI
江洪 , 袁亚伟 , 王森 . 阴影消除植被指数(SEVI)去除地形本影和落影干扰的性能评估与应用[J]. 地球信息科学学报, 2019 , 21(12) : 1977 -1986 . DOI: 10.12082/dqxxkx.2019.190409
Topographic correction is a crucial step in the pre-processing of remote sensing imagery of rugged terrain areas. Recently, a Shadow-Eliminated Vegetation Index (SEVI) was proposed to eliminate the influence of the self and cast terrain shadows. To further evaluate the SEVI performance for reducing the terrain shadow effect on regional scales, here we compared the SEVI with classic topographic correction models, including the C model, Sun-Canopy-Sensor (SCS)+C model, and Second Simulation of the Satellite Signal in the Solar Spectrum (6S)+C model via the case study of Fuzhou city, China. Landsat 5 TM satellite data and associated 30-meter Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model Version 2 (ASTER GDEM V2) were used for the comparison. The satellite imagery were first corrected using the C, SCS+C, and 6S+C models, followed by the calculation of the Normalized Difference Vegetation Index (NDVI) and the Ratio Vegetation Index (RVI). Then, the calculated vegetation indices were evaluated in different ways, including visual comparison, statistical analysis, and linear correlation analysis of the cosine of solar incidence angle ( ) versus vegetation indices. The C and SCS+C models showed accurate correction results over the self shadow areas but less accurate results over the cast shadow areas. Using adjacent sunny slopes as a reference, the relative errors of the NDVI and RVI over the self shadow areas were reduced from 71.64% and 52.57% to 4.80% and 6.43% (C model) and 0.50% and 9.94% (SCS+C model), respectively; the relative errors over cast shadow areas were reduced from 62.01% and 47.57% to 31.05% and 24.40% (C model) and 33.42% and 16.01% (SCS+C model), respectively. The 6S+C model showed better correction results over the cast shadow areas than the C model and the SCS+C model did. The relative errors of the NDVI were 8.63% and 14.27% over self shadow and cast shadow areas, respectively, if the 6S+C model was used. The SEVI seemed the most accurate among these models for corrections of self and cast shadows. The relative errors of the SEVI were 9.86% and 10.53% over the self and cast shadows, respectively. Finally, the SEVI was used to study the vegetation cover change in Fuzhou city from 1999 to 2014. Results show: (1) the vegetation cover in Fuzhou city increased from 1999 to 2014 in general, particularly over the areas with elevation ranging from 250 to 1250 meters; (2) The highest SEVI mean was located on the slope of about 40 degrees.
表1 1999年2月3日Landsat 5 TM 6S大气校正输入参数Tab. 1 Input parameters for 6S atmospheric correction of Landsat 5 TM on 3 February 1999 |
卫星几何条件 | 成像时间 | 大气模型 | 气溶胶模型 | 可见度 | 目标高度 | 传感器高度 | 传感器波段号 | 地表状况 | RAPP参数 |
---|---|---|---|---|---|---|---|---|---|
0、52.6、 140.8、0、0 | 2、3 | 2 | 1 | 45 | -0.36 | -1000 | 27/28/29 | 0、0、1 | -0.1 |
表2 阴影(本影和落影)区植被指数相对误差绝对值Tab.2 Absolute values of the relative errors of vegetation indices between shadows and adjacent sunny areas |
植被指数 | 数据类别 | VIself | VIcast | VIsunny | AREself/% | AREcast/% |
---|---|---|---|---|---|---|
NDVI | 表观反射率 | 0.13 | 0.18 | 0.47 | 71.64 | 62.01 |
C校正数据 | 0.44 | 0.29 | 0.42 | 4.80 | 31.05 | |
SCS+C校正数据 | 0.40 | 0.27 | 0.40 | 0.50 | 33.42 | |
6S+C校正数据 | 0.59 | 0.55 | 0.64 | 8.63 | 14.27 | |
RVI | 表观反射率 | 1.32 | 1.46 | 2.79 | 52.57 | 47.57 |
C校正数据 | 2.62 | 1.86 | 2.46 | 6.43 | 24.40 | |
SCS+C校正数据 | 4.08 | 3.81 | 4.53 | 9.94 | 16.01 | |
6S+C校正数据 | 3.88 | 3.41 | 5.03 | 22.86 | 32.29 | |
SEVI | 表观反射率 | 4.74 | 4.71 | 5.26 | 9.86 | 10.53 |
注:VIself、VIcast是本影、落影区域内植被指数的平均值;VIsunny是邻近阳坡无阴影区域植被指数的平均值;AREself是本影与相邻阳坡无阴影区域的植被指数平均值相对误差;AREcast是落影与相邻阳坡无阴影区域的植被指数平均值相对误差。 |
表3 植被变化阈值选取和统计结果Tab. 3 Vegetation change thresholds and statistics |
植被变化类型 | 植被指数阈值 | 植被指数差值阈值 | 变化面积/km2 | 净增面积/km2 |
---|---|---|---|---|
植被减少 | SEVI1999>0.31 | SEVI2014-1999<-0.10 | 641.44 | |
植被增加 | SEVI2014>0.32 | SEVI2014-1999>0.21 | 1535.05 | 893.61 |
[1] |
|
[2] |
|
[3] |
|
[4] |
江洪, 汪小钦, 孙为静 . 福建省森林生态系统NPP的遥感模拟与分析[J]. 地球信息科学学报, 2010,12(4):580-586.
[ Simulation by remote sensing and temporal-spatial analysis of forest ecosystem net primary productivity in Fujian province, China[J]. Journal of Geo-information Science, 2010,12(4):580-586. ]
|
[5] |
朱高龙, 居为民,
[
|
[6] |
何磊, 唐姝娅, 苗放 , 等. 岷江上游典型流域叶面积指数的遥感模型及反演[J]. 水土保持研究, 2010,17(1):218-221.
[
|
[7] |
|
[8] |
|
[9] |
田庆久, 闵祥军 . 植被指数研究进展[J]. 地球科学进展, 1998,13(4):327-333.
[
|
[10] |
孙华, 鞠洪波, 张怀清 , 等. 三种回归分析方法在Hyperion影像LAI反演中的比较[J]. 生态学报, 2012,32(24):7781-7790.
[
|
[11] |
廖钰冰, 陈新芳, 陈喜 , 等. 地形校正对叶面积指数遥感估算的影响[J]. 遥感信息, 2011(5):47-51.
[
|
[12] |
高永年, 张万昌 . 遥感影像地形校正研究进展及其比较实验[J]. 地理研究, 2008,27(2):467-477.
[
|
[13] |
闻建光, 柳钦火, 肖青 . 基于模拟数据分析地形校正模型效果及检验[J]. 北京师范大学学报:自然科学版2007, 43(3):255-263.
[
|
[14] |
|
[15] |
黄微, 张良培, 李平湘 . 一种改进的卫星影像地形校正算法[J]. 中国图象图形学报, 2005,10(9):1124-1128.
[
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
闻建光, 柳钦火, 肖青 , 等. 复杂山区光学遥感反射率计算模型[J]. 中国科学D 辑:地球科学, 2008,38(11):1419-1427.
[
|
[23] |
|
[24] |
许章华, 刘健, 余坤勇 , 等. 阴影植被指数SVI的构建及其在四种遥感影像中的应用效果[J]. 光谱学与光谱分析, 2013(12):3359-3365.
[
|
[25] |
吴志杰, 徐涵秋 . 卫星影像数据构建山地植被指与应用分析[J]. 地球信息科学学报, 2011,13(5):656-664.
[
|
[26] |
|
[27] |
|
[28] |
李晓琴, 孙丹峰, 张凤荣 . 基于遥感的北京山区植被覆盖景观格局动态分析.[J] 山地学报, 2003,21(3):272-280.
[
|
[29] |
江洪, 汪小钦, 陈星 . 一种以FCD模型从SPOT影像提取植被覆盖率的方法[J]. 地球信息科学, 2005,7(4):113-116.
[
|
[30] |
江洪, 王钦敏, 汪小钦 . 福建省长汀县植被覆盖度遥感动态监测研究[J]. 自然资源学报, 2006,21(1):126-132.
[
|
[31] |
江洪, 汪小钦, 吴波 , 等. 地形调节植被指数构建及在植被覆盖度遥感监测中的应用[J]. 福州大学学报:自然科学版, 2010,38(4):527-532.
[
|
[32] |
|
[33] |
数据来源于中国科学院计算机网络信息中心地理空间数据云平台( http://www.gscloud.cn.)
[ The data set is provided by Geospatial Data Cloud site, Computer Network Information Center, Chinese Academy of Sciences. ( http://www.gscloud.cn)]
|
[34] |
孙晓霞, 张继贤, 燕琴 , 等. 遥感影像变化检测方法综述及展望[J]. 遥感信息, 2011(1):119-123.
[
|
[35] |
张号, 邓强 . 遥感影像变化检测中伪变化信息剔除[J]. 工程技术研究, 2017(4):43-44.
[
|
/
〈 | 〉 |