基于包络检波和STFT谱分析的探地雷达土壤分层信息识别
李 俐(1976— ),河南南阳人,副教授,主要从事微波农业应用研究。E-mail: lilixch@163.com |
收稿日期: 2019-05-30
要求修回日期: 2019-09-16
网络出版日期: 2020-04-13
基金资助
中国农业大学基本业务费项目(2019TC117)
版权
Soil Layer Identification based on Envelope Detector and STFT Spectrum Analysis of Ground Penetrating Radar Signals
Received date: 2019-05-30
Request revised date: 2019-09-16
Online published: 2020-04-13
Supported by
The Fundamental Research Funds for the Central Universities(2019TC117)
Copyright
土壤分层信息,特别是表土层结构,对土地生产力具有重要影响,是评价土壤质量的一个重要指标。为了快速、准确地获取土壤分层信息,本文利用探地雷达对分层土壤进行了回波信号采集,并分别在时域和频域分析土壤层位置和层厚信息。首先在信号预处理的基础上,借助包络检波方法确定在土壤分层界面在时域上的位置;然后获取电磁波速度,得到土壤分层厚度。考虑到土壤介电常数与电磁波在土壤中传播速度的相关性,采用短时傅里叶变换方法(Short-time Fourier Transform,STFT)获取各土壤层时频域特征值,并利用回归分析建立特征值与介电常数之间的数学关系,实现对各土壤层的介电常数估算,从而计算出电磁波传播速度,进而确定土壤各层厚度。为验证算法的有效性,分别对理想模拟实验环境和农田环境进行了探地雷达实验,结果表明利用包络检波对探地雷达回波信息进行分析,土壤层检出率达到94.5%,借助STFT谱分析进行探地雷达回波速度估计,对于70 cm深度以上土层厚度计算误差大都保持在10%以下,但随着土壤深度的增加,误差变大。总体来说,本方法能有效识别浅层土壤的分层信息,可应用于实际生产中耕层厚度的估测。
李俐 , 付雪 , 崔佳 , 张超 , 朱德海 , 吴克宁 . 基于包络检波和STFT谱分析的探地雷达土壤分层信息识别[J]. 地球信息科学学报, 2020 , 22(2) : 316 -327 . DOI: 10.12082/dqxxkx.2020.190265
Soil stratification information, especially surface soil structure, has important impact on land productivity and is an important index for evaluating soil quality. The present study aimed to obtain the information of soil layers quickly and accurately, for which Ground Penetrating Radar (GPR) technology was used. The echo signals of GPR were processed in both the time and frequency domains. In the time domain, the envelope detection method was used to determine the transience of the echo signals and therefore to get the location of soil layers on the time axis. To get the soil layer location in spatial coordinates, the velocity of electromagnetic wave propagation in soil was needed. Considering the velocity of electromagnetic wave propagation in soil layers varying with the soil dielectric constants, the Short-Time Fourier Transform (STFT) method was applied to the echo signals for dielectric constant analysis in the frequency domain. Soil layers with different dielectric constant exhibited different characteristics in the STFT signals. After clustering analysis of the soil layers, the relationship between STFT characteristic value and dielectric constant in a certain layer was established based on regressive analysis. Then, the velocity of electromagnetic wave propagation in each soil layer was determined using the dielectric constants. After the electromagnetic wave velocity of Ground Penetrating Radar (GPR) was estimated, the location of layers' interface was further determined and then the thickness of each soil layer was computed. To valid the effect of the above-mentioned methods, the echo signals of soil, for both the ideal simulated experimental environment which has obvious layered interface and the farmland environment whose layers have changed naturally, were collected. The experimental results show that, with the envelope detection method, layers not deeper than 70cm in the ideal simulated experimental environment were 100% detected and for both the ideal simulated experimental environment and the farmland environment, the detection rate of ground penetrating radar echo information reached 94.5%. The estimation of ground penetrating radar echo velocity using STFT spectrum analysis shows that the calculation error of soil thickness above 70 cm depth was mostly below 10%. Our findings suggest that the proprosed methodology can effectively identify the stratification information of shallow soil and estimate the thickness of the soil. However, surface vegetation, film mulching, soil voids, soil salinity, moisture heterogeneity, gradual change of soil layers, and soil layer depth will all affect the accuracy of the detection. For example, with the increase of soil depth, the error becomes larger. So, if the data acquisition spot is selected rationally, the proposed methodology can be applied to plough layer thickness detection in practical fileds.
表1 研究区各土体构型剖面点分层数据汇总Tab. 1 Hierarchical data aggregation of soil configuration profile points in the study area |
样点 | 分层 | 双程走时/ns | 介电常数/(F/m) | 土壤层厚/cm | 层厚误差分析 | |||||
---|---|---|---|---|---|---|---|---|---|---|
实测值 | 计算值 | 实测值 | 计算值 | 绝对误差/cm | 相对误差/% | |||||
样点1 | 0 | 4.65 | ||||||||
1 | 8.32 | 9.23 | 9.49 | 18 | 17.87 | -0.13 | 0.71 | |||
2 | 15.97 | 7.38 | 7.39 | 44 | 42.22 | -1.78 | 4.05 | |||
3 | 18.43 | 10.19 | 9.96 | 10 | 11.68 | 1.68 | 16.80 | |||
4 | 20.60 | 10.36 | 9.86 | 10 | 10.34 | 0.34 | 3.45 | |||
5 | 23.55 | 9.79 | 9.83 | 26 | 14.15 | -11.85 | 45.56 | |||
样点2 | 0 | 7.14 | ||||||||
1 | 12.10 | 12.71 | 13.13 | 20 | 20.54 | 0.54 | 2.68 | |||
2 | 16.58 | 10.56 | 11.94 | 19 | 19.49 | 0.49 | 2.56 | |||
3 | 24.30 | 10.38 | - | 60 | - | - | - | |||
样点3 | 0 | 6.45 | ||||||||
1 | 9.62 | 9.14 | 9.10 | 15 | 15.77 | 0.77 | 5.14 | |||
2 | 12.67 | 7.25 | 7.11 | 17 | 17.16 | 0.16 | 0.94 | |||
3 | 16.17 | 7.63 | 7.34 | 36 | 19.38 | -16.62 | 46.17 | |||
4 | 25.00 | 9.78 | 13.82 | 13 | 35.62 | 22.62 | 174 | |||
样点4 | 0 | 8.89 | ||||||||
1 | 11.58 | 13.07 | 13.00 | 11 | 11.19 | 0.19 | 1.73 | |||
2 | 20.51 | 12.49 | 12.22 | 37 | 38.31 | 1.31 | 3.53 | |||
3 | 30.48 | 12.13 | 12.74 | 39 | 41.93 | 2.93 | 7.50 | |||
4 | 35.20 | 11.15 | 11.49 | 14 | 20.87 | 6.87 | 49.06 |
[1] |
解迎革, 李霞, 张风宝 , 等. 基于电阻率断层扫描技术探测林地土层厚度[J]. 农业工程学报, 2015,31(4):212-216.
[
|
[2] |
郭秀军, 章光新, 谭笑平 . 物理探查方法在土壤改良中的应用研究[J]. 地理科学, 1999,19(5):470-474.
[
|
[3] |
|
[4] |
何瑞珍, 胡振琪, 王金 , 等. 利用探地雷达检测土壤质量的研究进展[J]. 地球物理学进展, 2009,24(4):1483-1492.
[
|
[5] |
胡振琪, 陈政, 陈星彤 . 应用探地雷达检测复垦土壤的分层结构[J]. 中国矿业, 2005,14(3):73-75.
[
|
[6] |
彭亮, 徐清, 朱忠礼 , 等. 应用低频微波波段GPR测量土壤结构[J]. 北京师范大学学报, 2007,43(3):324-329.
[
|
[7] |
于秀秀, 马兴旺, 迪力夏提 , 等. 探地雷达在土层厚度调查中的试验研究[J]. 土壤学报, 2011,48(4):874-878.
[
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
刘军, 刘敏, 程建川 . 国外探地雷达技术在测定沥青层厚度方面的应用[J]. 中外公路, 2006(2):102-105.
[
|
[14] |
宗鑫, 王心源, 刘传胜 , 等. 探地雷达在地下考古遗存探测中的实验与应用[J]. 地球信息科学学报, 2016,18(2):272-281.
[
|
[15] |
杨虎, 郭华东, 李新武 , 等. 极化雷达目标信息分解技术及其在古湖岸线探测中的应用[J]. 地球信息科学学报, 2003,5(2):109-114.
[
|
[16] |
张海如, 王国富, 张法全 . 联合瞬时参数分析用于探地雷达目标增强[J]. 微波学报, 2017,33(1):16-20.
[
|
[17] |
张先武, 高云泽, 方广有 . Hilbert谱分析在探地雷达薄层识别中的应用[J]. 地球物理学报, 2013,56(8):2790-2798.
[
|
[18] |
朱军涛, 廖红建, 谢勇勇 . 采用短时傅里叶变换的铁路车载探地雷达数据解译方法[J]. 西安交通大学学报, 2012,46(7):108-114.
[
|
[19] |
戴前伟, 吴铠均, 张彬 . 短时傅里叶变换在GPR数据解释中的应用[J]. 物探与化探, 2016,40(6):1227-1231.
[
|
[20] |
于景兰, 王春和 . 探地雷达探测地下目标时的波速估计[J]. 地球物理学进展, 2003,18(3):477-480.
[
|
[21] |
王新静, 赵艳玲, 胡振琪 . 不同水分条件下探地雷达电磁波波速估算方法与对比分析[J]. 煤炭学报, 2013,38(S1):174-179.
[
|
/
〈 | 〉 |