基于ICESat/GLAS的山东省SRTM与ASTER GDEM高程精度评价与修正
秦臣臣(1993— ),男,山东枣庄人,硕士生,研究方向为空间数据质量改善。E-mail:1157860213@qq.com |
收稿日期: 2019-07-30
要求修回日期: 2019-12-19
网络出版日期: 2020-05-18
基金资助
国家自然科学基金项目(41804001)
国家自然科学基金项目(41371367)
山东省自然科学基金项目(ZR2019MD007)
山东省自然科学基金项目(ZR2019BD006)
山东省高等学校青创科技支持计划(2019KJH007)
版权
Elevation Accuracy Evaluation and Correction of SRTM and ASTER GDEM in Shandong Province based on ICESat/GLAS
Received date: 2019-07-30
Request revised date: 2019-12-19
Online published: 2020-05-18
Supported by
National Natural Science Foundation of China(41804001)
National Natural Science Foundation of China(41371367)
Shandong Provincial Natural Science Foundation, China(ZR2019MD007)
Shandong Provincial Natural Science Foundation, China(ZR2019BD006)
A Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program(2019KJH007)
Copyright
SRTM3和ASTER GDEM V2数据具有较高的空间分辨率和广泛的覆盖范围,对于地学研究具有重要意义;但在不同地形复杂度和地面覆盖物区域,两类数据的误差分布并不均匀。SRTM3和ASTER GDEM V2 数据自公布以来,其精度修正一直是研究热点。然而大范围区域精度验证缺乏有效手段,传统方法可靠性差且数据获取成本较高。自ICESat-1数据公开以来,它们已成为SRTM3和ASTER GDEM V2精度评定的主要检核点。为此,本文以山东省为研究区域,借助ICESat-1评估了SRTM3和ASTER GDEM V2的高程精度,并根据插值误差曲面对两种DEM进行了修正。分析表明,原始SRTM和ASTER高程中误差分别为5.57 m和7.20 m,均高于标称精度;随着坡度的增大,高程精度呈降低的趋势。通过分析土地覆盖类型与误差分布关系表明:农田、灌丛土地类型精度较高;森林、湿地精度较低。分别采用反距离加权、普通克里金、地形转栅格和自然邻域插值方法构建误差曲面。结果表明:不同的插值方法构建的误差曲面的特征和精度也不同。其中,反距离加权修正的效果最佳,其次是地形转栅格和自然邻域,而普通克里金修正的效果最差。
秦臣臣 , 陈传法 , 杨娜 , 高原 , 王梦樱 . 基于ICESat/GLAS的山东省SRTM与ASTER GDEM高程精度评价与修正[J]. 地球信息科学学报, 2020 , 22(3) : 351 -360 . DOI: 10.12082/dqxxkx.2020.190411
Shuttle Radar Topography Mission(SRTM) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) GDEM have a high spatial resolution and wide spatial coverage, which play an important role in many Earth researches. However, their error distributions are heterogeneous on different terrain types. In order to assess the elevation accuracy of the two DEMs, data from Geoscience Laser Altimeter System (GLAS) carried on the Ice, Cloud, and land Elevation Satellite (ICESat) are often used as the checkpoints due to their high accuracy. Taking Shandong Province as the research area, the accuracy of SRTM and ASTER GDEM are first evaluated by ICESat/GLAS in the years of 2003-2010 in this paper. Results indicate that the root mean squared errors (RMSEs) of SRTM and ASTER are 5.57 m and 7.20 m, respectively, which are much lower than the nominated accuracy. We further analyzed the effect of terrain slope and landscape type on the accuracy of SRTM and ASTER GDEM. Specifically, the study area was first divided into different sub-regions according to slope ranges (0~5°, 5~10°, 10~15°, 15~20°, 20~25°, 30~35°, 35~40°, 40~45°) and landscape types (farmland, shrub, forest, grassland, wetlands, water body), respectively. Then, the RMSE of each sub-region was computed and analyzed. We found that with the increasing of terrain slope, the accuracy of the two DEMs decreases, and under different land cover types, they also have different accuracy. More specifically, the two DEMs have a higher accuracy on farmland and shrub; while have a lower accuracy on forest and wet lands. To improve the accuracy of SRTM and ASTER, their error surfaces were first produced by interpolating the elevation differences between the DEM and randomly selected ICESat/GLAS data with the proportion of 90%. The interpolation methods include Inverse Distance Weight (IDW), Ordinary Kriging (OK), terrain-to-grid method (T2G) and Natural Neighborhood (NN). Then, the interpolated error surfaces were added to the original DEMs. Accuracy assessment of the improved SRTM and ASTER using the remaining 10% ICESat/GLAS demonstrates that IDW with the RMSEs of 2.20 m and 5.31 m is more accurate than the other interpolation methods. IDW is closely followed by T2G and NN. It is surprised to see that OK produces the worst results. Hence, SRTM and ASTER GDEM are improved with the IDW-based error surfaces. The ICESat-2 satellite was launched on September 15, 2018. It can emit 10,000 laser pulses per second, monitoring the height of glaciers and land in unprecedented detail. ICESat-2 collects elevation data over all surfaces spanning the world's frozen regions, forests, lakes, urban areas, and more. Thus, further researches will focus on improving the accuracy of SRTM and ASTER with the ICESat2 data.
表1 ICESat/GLAS与误差统计Tab. 1 Statistics of ICESat/GLAS and elevation errors |
DEM | 点数/个 | 最大值/m | 最小值/m | 平均值/m | 标准差/m | 均方差/m |
---|---|---|---|---|---|---|
SRTM | 335 716 | 47.92 | -47.83 | -0.25 | 5.57 | 5.57 |
ASTER | 328 366 | 47.94 | -47.65 | 0.08 | 7.20 | 7.20 |
Tab. 2 Accuracy statistics under different land types in Shandong Province (m) |
土地覆盖类型 | SRTM 均方差 | ASTER GDEM 均方差 |
---|---|---|
农田 | 4.13 | 5.15 |
灌丛 | 5.02 | 6.32 |
森林 | 8.52 | 11.35 |
草地 | 5.72 | 6.87 |
湿地 | 7.21 | 9.54 |
水体 | 7.05 | 9.07 |
表3 SRTM坡度分带精度统计Tab. 3 Accuracy statistics of SRTM under different slopes |
坡度/° | 点数/个 | 最大值/m | 最小值/m | 平均值/m | 标准差/m | 均方差/m |
---|---|---|---|---|---|---|
0~5 | 296 699 | 99.91 | -95.60 | 0.32 | 4.40 | 4.40 |
5~10 | 18 631 | 99.44 | -60.26 | 0.12 | 12.48 | 12.48 |
10~15 | 8 365 | 98.03 | -91.48 | 0.60 | 19.00 | 19.01 |
15~20 | 3 752 | 99.74 | -85.74 | 0.96 | 24.08 | 24.08 |
20~25 | 1 107 | 78.73 | -79.00 | 1.21 | 29.16 | 29.17 |
25~30 | 193 | 97.94 | -82.80 | 5.12 | 33.08 | 33.17 |
30~35 | 30 | 74.47 | -72.86 | -8.70 | 39.10 | 39.77 |
表4 ASTER GDEM坡度分带精度统计Tab. 4 Accuracy statistics of ASTER GDEM under different slopes |
坡度/° | 点数/个 | 最大值/m | 最小值/m | 平均值/m | 标准差/m | 均方差/m |
---|---|---|---|---|---|---|
0~5 | 204 513 | 99.42 | -86.30 | -0.10 | 6.61 | 6.61 |
5~10 | 90 474 | 99.95 | -97.83 | 0.37 | 8.40 | 8.40 |
10~15 | 21 270 | 98.96 | -69.38 | 0.72 | 10.93 | 10.93 |
15~20 | 7 260 | 97.74 | -91.60 | 0.54 | 12.83 | 12.83 |
20~25 | 3 222 | 99.56 | -81.74 | -0.47 | 13.85 | 13.85 |
25~30 | 1 362 | 78.97 | -86.13 | -1.45 | 15.93 | 15.94 |
30~35 | 445 | 59.58 | -56.38 | -1.09 | 17.64 | 17.66 |
35~40 | 135 | 84.85 | -59.74 | -3.64 | 23.59 | 23.68 |
40~45 | 23 | 62.67 | -55.10 | -9.58 | 21.72 | 22.21 |
表5 修正后的SRTM和ASTER GDEM精度分析Tab. 5 Accuracy Analysis of SRTM and ASTER GDEM using Interpolation Correction (m) |
插值方法 | SRTM 均方差 | ASTER GDEM 均方差 |
---|---|---|
反距离加权 | 2.20 | 5.31 |
地形转栅格 | 2.57 | 5.47 |
自然邻域法 | 2.70 | 5.56 |
普通克里金 | 4.74 | 5.93 |
[1] |
唐川, 齐信, 丁军 , 等. 汶川地震高烈度区暴雨滑坡活动的遥感动态分析[J]. 地球科学·中国地质大学学报, 2010,35(2):317-323.
[
|
[2] |
陈俊勇 . 对SRTM3和GTOPO30地形数据质量的评估[J]. 武汉大学学报·信息科学版, 2005,30(11):941-944.
[
|
[3] |
|
[4] |
郭笑怡, 张洪岩, 张正祥 , 等. ASTER-GDEM与SRTM3数据质量精度对比分析[J]. 遥感技术与应用, 2011(3):75-80.
[
|
[5] |
袁乐先, 李斐, 张胜凯 , 等. 基于ICESat数据的南极冰盖DEM插值方法比较及精度分析[J]. 冰川冻土, 2015,37(4):946-953.
[
|
[6] |
张朝忙, 刘庆生, 刘高焕 , 等. 太湖地区SRTMDEM高程精度质量评价[J]. 测绘科学, 2013,39(3):139-142.
[
|
[7] |
卢丽君, 张继贤, 王腾 . 一种基于高分辨率雷达影像以及外部DEM辅助的复杂地形制图方法[J]. 测绘学报, 2011(4):61-65.
[
|
[8] |
云烨, 曾琪明, 焦健 , 等. 基于参考DEM的机载InSAR定标方法[J]. 测绘学报, 2014,43(1):74-82.
[
|
[9] |
杜小平, 郭华东, 范湘涛 , 等. 基于ICESat/GLAS数据的中国典型区域SRTM与ASTER GDEM高程精度评价[J]. 地球科学——中国地质大学学报, 2013(4):229-239.
[
|
[10] |
吴宇鑫, 赵牡丹, 高志远 , 等. 中国3类典型区SRTMGL1和SRTMV4精度对比分析[J]. 水土保持研究, 2019(4):36-42.
[
|
[11] |
万杰, 廖静娟, 许涛 , 等. 基于ICESat/GLAS高度计数据的SRTM数据精度评估——以青藏高原地区为例[J]. 国土资源遥感, 2015,27(1):100-105.
[
|
[12] |
沈焕锋, 刘露, 岳林蔚 , 等. 多源DEM融合的高差拟合神经网络方法[J]. 测绘学报, 2018,47(6):854-863.
[
|
[13] |
|
[14] |
田明璐, 常庆瑞, 冯冰凛 . 利用ASTER数据融合的SRTM空值填补方法[J]. 测绘科学, 2012(2):90-91,106.
[
|
[15] |
孙亮, 严薇, 刘平芝 , 等. 采用小波分析的SRTM DEM与ASTER DEM数据融合[J]. 测绘科学技术学报, 2014(4):388-392.
[
|
[16] |
|
[17] |
|
[18] |
闫业超, 张树文, 岳书平 . 东北川岗地形区SRTM数据质量评价[J]. 中国科学院大学学报, 2008,25(1):41-46.
[
|
[19] |
马龙, 李颖 . 从GTOPO30到SRTM DEM精度研究——以西藏为例[J]. 水土保持通报, 2006,26(5):71-74.
[
|
[20] |
孙茜 . SRTM数据精度检测[D]. 西安:长安大学, 2010: 1-51.
[
|
[21] |
詹蕾, 汤国安, 杨昕 . SRTM DEM高程精度评价[J]. 地理与地理信息科学, 2010,26(1):34-36.
[
|
[22] |
张锦明, 游雄, 万刚 . DEM插值参数优选的试验研究[J]. 测绘学报, 2014,43(2):178-185.
[
|
[23] |
赵国松, 杜耘, 凌峰 , 等. ASTER GDEM与SRTM3高程差异影响因素分析[J]. 测绘科学, 2012,37(4):167-170.
[
|
[24] |
|
[25] |
张泉, 杨勤科, 程洁 , 等. 中国地区3″ SRTM高程误差特征[J]. 武汉大学学报·信息科学版, 2018,43(5):685-689.
[
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
/
〈 | 〉 |