基于等高线空间关系的鞍部点提取方法
黄 楠(1995— ),女,安徽六安人,硕士生,主要从事数字地形分析研究。E-mail:2975594935@qq.com |
收稿日期: 2019-09-30
要求修回日期: 2019-12-18
网络出版日期: 2020-05-18
基金资助
国家自然科学基金项目(41771415)
国家自然科学基金项目(41930102)
版权
A Method of Saddle Point Extraction based on Contour Spatial Relationship
Received date: 2019-09-30
Request revised date: 2019-12-18
Online published: 2020-05-18
Supported by
National Natural Science Foundation of China(41771415)
National Natural Science Foundation of China(41930102)
Copyright
鞍部点是反映地表形态起伏变化的重要地形特征点之一,准确地提取鞍部点有利于地形的空间关系和结构特征分析。现有的鞍部点提取方法通常是直接基于规则格网DEM数据,无法顾及鞍部点与周围地形的空间拓扑关系和复杂地形对其的影响,不仅产生大量的伪鞍部点,而且忽略一些关键地区的鞍部点。本文根据鞍部点的地形形态特征,设计了一种基于等高线数据的鞍部点提取算法。该算法利用等高线闭合的特征,将等高线按照一定规则转成等高面数据,再利用等高面之间的相邻拓扑关系实现递归查找并自动提取鞍部点。实验结果显示:① 鞍部点的数量和位置与等高距的大小显著相关,在一定尺度范围内,等高距越小,提取出鞍部点越多,位置精度也逐渐提高;② 与基于规则格网DEM数据提取方法相比,该方法能更有效的过滤大量伪鞍部点,提高了鞍部点的提取精度,同时也降低了鞍部点提取算法的复杂度;与基于等高线的增量缓冲方法(Incremental Buffering Algorithm)相比,本文的方法能有效提高鞍部点提取的完整性,更适用于本文DEM的尺度即5 m DEM数据。
黄楠 , 杨昕 , 刘海龙 . 基于等高线空间关系的鞍部点提取方法[J]. 地球信息科学学报, 2020 , 22(3) : 410 -421 . DOI: 10.12082/dqxxkx.2020.190572
The saddle point is one of the important terrain feature points that reflects the fluctuation of the surface morphology. Accurate extraction of saddle points is beneficial to the analysis of spatial relationship and structural feature of terrain. Existing saddle point extraction methods are usually directly based on regular grid DEMs data which not have topological relation, unable to take into account the spatial topological relationship between saddle point and surrounding terrain and the influence of complex terrain on them. Many false feature points which are not in the saddle region will be extracted, and saddle points in some key areas also will be ignored. Thus, this paper designs an algorithm for extracting saddle points based on contour data according to the morphological characteristic of saddle points. This algorithm makes use of the feature of contour closure, converts contour lines into contour polygons data according to certain rules, and then uses the adjacent topological relations between contour polygons to recursively search and automatically extract the saddle-points. The experimental results show: (1) The number and position of saddle points are significantly related to the size of the contour interval. Within a certain range of scales, the smaller the contour interval is, the more saddle points are extracted, and the position accuracy is gradually improved. (2) Compared with the method based on regular grid DEMs data extraction, this method can more effectively filter many false feature points which are not in the saddle region, improve the accuracy of saddle point extraction, and also reduce the complexity of the saddle point extraction algorithm. In addition, DEM scale is selective for saddle point extraction. Compared with incremental contour method to extract saddle points, the idea is to find the intersection point which is the saddle point by extending the adjacent pseudo-saddle point contour line to the junction, this way has the advantage of more accurate position. However, this method requires DEM data with high precision, and when applied to 5-meter spatial resolution DEM data, most saddle points can't be extracted. The method in this paper is to use the midpoint of the nearest point in the two peaks as the saddle point, whose point position is not completely accurate, resulting in a certain error in spatial position accuracy. However, it can identify the majority of saddle points effectively, which has an advantage over the method of extracting saddle points mentioned above. Thus, the method in this paper can effectively improve the integrity of saddle point extraction and is more suitable for the DEM scale data (5 m DEM) in this paper.
表1 鞍部点提取精度统计Tab. 1 Accuracy statistics of the saddle point extraction |
实验区 | 正确点数/个 | 提取点数/个 | 漏判点数/个 | 误判点数/个 | 提取正确率/% |
---|---|---|---|---|---|
实验区1 | 50 | 50 | 0 | 0 | 100 |
实验区2 | 37 | 37 | 0 | 0 | 100 |
表2 增量缓冲算法提取鞍部点数统计Tab. 2 Statistics of incremental buffering algorithm extraction of saddle point |
等高距/m | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
提取出鞍部点数/等高线相交数 | 18 | 17 | 18 | 16 | 15 | 14 | 12 | 13 | 13 | 11 |
漏提取鞍部点数/等高线未相交数 | 49 | 47 | 43 | 39 | 35 | 36 | 31 | 30 | 29 | 26 |
鞍部点总数/个 | 67 | 64 | 61 | 55 | 50 | 50 | 43 | 43 | 42 | 37 |
图11 实验区1不同方法提取结果对比Fig. 11 Comparison of extraction results of different methods in study area 1 |
表3 不同方法在实验区提取的鞍部点数对比Tab. 3 Comparison of saddle points extracted by different methods in the study area |
实验区分析方法 | 提取点数/个 | 漏判点数/个 | 伪鞍部点数/个 | 冗余鞍部点数/个 | |
---|---|---|---|---|---|
实验区1 | 水文分析法 | 85 | 9 | 18 | 26 |
基于等高线法 | 50 | 0 | 0 | 0 | |
实验区2 | 水文分析法 | 66 | 7 | 16 | 20 |
基于等高线法 | 37 | 0 | 0 | 0 |
[1] |
汤国安, 李发源, 刘学军 . 数字高程模型教程[M]. 北京: 科学出版社, 2010.
[
|
[2] |
|
[3] |
刘逸文, 熊礼阳, 方炫 . 黄土地貌地形特征点格局研究[J]. 地理与地理信息科学, 2017,33(5):35-41.
[
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
钟业勋, 魏文展, 李占元 . 基本地貌形态数学定义的研究[J]. 测绘科学, 2002(3):16-18,2.
[
|
[9] |
黄培之 . 提取山脊线和山谷线的一种新方法[J]. 武汉大学学报·信息科学版, 2001,26(3):247-252.
[
|
[10] |
黄培之, 陈凯辉, 刘泽慧 . 基于共轭地表曲面的山脊线和山谷线提取方法的研究[J]. 测绘科学, 2004(5):25-27,3.
[
|
[11] |
熊礼阳, 汤国安, 宴实江 . 基于DEM的山地鞍部点分级提取方法研究[J]. 测绘科学, 2013,38(2):181-183.
[
|
[12] |
闾国年, 钱亚东, 陈钟明 . 流域地形自动分割研究[J]. 遥感学报, 1998,11(4):298-304.
[
|
[13] |
张维, 汤国安, 陶旸 , 等. 基于DEM汇流模拟的鞍部点提取改进方法[J]. 测绘科学, 2011,36(1):158-159,163.
[
|
[14] |
朱庆, 赵杰, 钟正 , 等. 基于规则格网DEM的地形特征提取算法[J]. 测绘学报, 2004,33(1):77-82.
[
|
[15] |
|
[16] |
乔朝飞, 赵仁亮, 陈军 . 等高线空间关系研究[J]. 测绘与空间地理信息, 2004(5):77-81.
[
|
[17] |
朱强, 武芳, 钱海忠 , 等. 基于空间认知的等高线树的构建[J]. 信息工程大学学报, 2011,12(4):458-462.
[
|
[18] |
|
[19] |
张威 . 基于等高线簇的等高线树构建方法研究[J]. 科学技术创新, 2017(22):69-70.
[
|
[20] |
|
[21] |
吴凡, 粟卫民 . 顾及地形特征的等高线拓扑空间关系表达[J]. 武汉大学学报·工学版, 2006,39(3):140-144.
[
|
[22] |
孔月萍, 易炜, 张跃鹏 . 利用拓扑关系快速提取鞍部点[J]. 计算机工程与应用, 2013,49(16):165-167.
[
|
[23] |
郭庆胜, 毋河海, 李沛川 . 等高线的空间关系规则和渐进式图形简化方法[J]. 武汉测绘科技大学学报, 2000,25(1):31-34.
[
|
[24] |
彭云龙, 王婕婷, 赵志军 . 基于DEM的庐山地区水系的提取方法与应用探究[J]. 地理教学, 2016(18):57-59.
[
|
[25] |
赵远洋, 黄平, 战一波 . 基于提高Arc Hydro的水文分析精度的研究进展[J]. 山东工业技术, 2016(14):214.
[
|
[26] |
吴婕, 董有福, 彭瑾 , 等. 基于DEM的山顶点和鞍部点一体化提取[J]. 测绘地理信息, 2018,43(5):85-88.
[
|
/
〈 |
|
〉 |