基于交通出行链的就医活动识别理论框架与方法体系
王姣娥(1981— ),女,湖南涟源人,博士,研究员,主要从事交通地理与区域发展、城市交通大数据等研究。E-mail:wangjiaoe@163.com |
收稿日期: 2019-09-30
要求修回日期: 2019-11-06
网络出版日期: 2020-06-10
基金资助
中国科学院战略性先导科技专项(A类XDA19040402)
国家自然科学基金优秀青年基金项目(41722103)
版权
Identifying Hospital-seeking Behavior based on Trip Chain Data: Theoretical Framework and Methodological System
Received date: 2019-09-30
Request revised date: 2019-11-06
Online published: 2020-06-10
Supported by
Strategic Priority Research Program of the Chinese Academy of Sciences(A类XDA19040402)
National Natural Science Foundation of China(41722103)
Copyright
交通是人们实现出行目的的重要工具和载体,也是研究城市居民出行目的的重要手段。本文试图采用交通出行数据来识别就医活动目的的行程,以深化交通大数据研究的应用领域。在合并交通出行链的基础上,构建了就医活动识别的理论框架和方法体系,提出6大准则:邻近性准则、出行链闭合准则、单一出行目的准则、时间耦合性准则、路径偶发准则。以北京市为例,基于公交车刷卡和出租车GPS数据,明确就医出行的关键参数与阈值,最终甄别出以就医为目的的交通出行链,并对识别结果进行分析与验证。基于交通出行链的就医活动识别研究可以弥补传统研究中病例数据和问卷数据样本量小和难获取的不足,为就医活动研究提供了新的方法体系,也为基于其他交通出行目的识别研究提供理论和方法借鉴。
王姣娥 , 杜方叶 , 靳海涛 , 刘瑜 . 基于交通出行链的就医活动识别理论框架与方法体系[J]. 地球信息科学学报, 2020 , 22(4) : 805 -815 . DOI: 10.12082/dqxxkx.2020.190566
Transportation is an important tool and carrier for people to realize their trip purposes. Thus, it's a vital measurement for studying spatio-temporal pattern of individuals. Trip chain refers that a series of displacements completed by an individual in order to do one or more activities using a transportation. The time period of trip chain is one day. There are lots of information on individuals' trip purpose contained in trip chains. Extract this information from trip chains help to explore individuals travel behavior, which help understand the urban space. In previous studies, researchers have been focused on inferring and exploring the dynamic characteristics of commuting behavior, go to school activities, go home activities, entertainment, and leisure activities in urban space with the help of smart card data and taxi trajectory data. But limited studies have been carried on detecting hospital-seeking behavior with the assistance of trip record. With this in mind, this paper attempted to extend the application of trip records on hospital-seeking behavior. Specifically, we proposed a theoretical framework used to detecting hospital-seeking behavior from trip record. It consists of six principle, such as proximity principle, ring-closure principle, single-purpose principle, infrequency principle, time-coherence principle, and accompany principle. Also, a methodology for detecting hospital-seeking behavior was put forward based on the theoretical framework. Taking Beijing as an example, we found the key parameters of detecting hospital-seeking behavior and calibrated their thresholds. Finally, spatial and temporal patterns of hospital-seeking behavior were explored to reveal the accuracy of our results. On the one hand, the spatial patterns of hospital-seeking behavior showed that patients were mainly concentrated in tertiary hospitals. Tertiary hospitals have better professional skills and a larger service area than secondary and primary hospitals. Thus, they attracted and served more patients. On the other hand, patients' arrival time shows a high peak during 8:00 am and 10:00 am and a low peak during 13:00 pm and 15:00 pm, which closed to start time of registration and treatment. Two aspects above both supported the accuracy of results and rationality of the theoretical framework. The application of trip chains on detecting hospital-seeking behavior could make up for the shortages of traditional data, which is a small sample and difficult to access. This paper provided a new perspective, methodology, and data source for researching hospital-seeking behavior. Moreover, it could provide methodology references for other activities based on trip records.
Key words: big data; bus; taxi; hospital; trip purpose; trip chain; Beijing
表1 公交IC卡刷卡数据和出租车GPS数据结构Tab. 1 Data structure of smart card data and taxi GPS data |
个体 编号 | 上车点 位置 | 上车 时间 | 下车点 位置 | 下车 时间 | |
---|---|---|---|---|---|
公交IC卡刷卡数据 | √ | √ | √ | √ | √ |
出租车GPS数据 | √ | √ | √ | √ |
表2 公交IC卡刷卡数据示例Tab. 2 Sample of smart card data records |
卡号 | 上车站点 | 站点经度/°E | 站点纬度/°N | 上车时间 | 下车站点 | 站点经度/°E | 站点纬度/°N | 下车时间 |
---|---|---|---|---|---|---|---|---|
0002 | 酒仙桥 | 116.489 | 39.968 | 2017-06-05 10:44:00 | 首钢医院 | 116.204E | 39.927N | 2017-06-05 11:42:00 |
表3 出租车OD矩阵示例Tab. 3 Table of taxi OD data |
ID | O点经度 /°E | O点纬度 /°N | D点经度 /°E | D点纬度 /°N |
---|---|---|---|---|
0000012 | 116.523 | 39.852 | 116.542 | 39.921 |
表4 就医活动识别结果的统计特征Tab. 4 Statistics of hospital-seeking behavior |
就医者数量/人 | 交通出行时间/min | 就医时长/min | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
公交车 | 出租车 | 公交车 | 出租车 | 公交车 | ||||||
均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | |
所有医院 | 220 | 231.1 | 441 | 959.6 | 21.1 | 16.7 | 18.7 | 13.4 | 138.2 | 56.7 |
三级医院 | 433 | 321.5 | 1520 | 1575.9 | 22.5 | 17.3 | 19.1 | 13.8 | 142.4 | 59.8 |
二级医院 | 271 | 217.7 | 287 | 245.8 | 20.9 | 17.0 | 18.0 | 12.8 | 139.3 | 58.2 |
一级医院 | 114 | 116.1 | 88 | 130.9 | 19.7 | 15.8 | 17.0 | 11.4 | 133.3 | 52.5 |
注:就医时长近似等同于交通系统外停留时间。因出租车行程中无法匹配乘客信息,故无法识别其交通系统外的时间,此处仅通过公交车的交通出行链分析就医时长的统计规律。 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
刘丽敏, 虞虎, 靳海涛 . 基于公交刷卡数据的北京城市居民周末户外休闲行为特征研究[J]. 地域研究与开发, 2018,37(6):54-59.
[
|
[12] |
|
[13] |
龙瀛, 张宇, 崔承印 . 利用公交刷卡数据分析北京职住关系和通勤出行[J]. 地理学报, 2012,67(10):1339-1352.
[
|
[14] |
|
[15] |
|
[16] |
黄洁, 王姣娥, 靳海涛 , 等. 北京市地铁客流的时空分布格局及特征——基于智能交通卡数据[J]. 地理科学进展, 2018,37(3):397-406.
[
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
杨格格, 宋辞, 裴韬 , 等. 北京对外交通枢纽乘客OD时空分布特征[J]. 地球信息科学学报, 2016,18(10):1374-1383.
[
|
[26] |
|
[27] |
|
[28] |
陈卓然, 黄翀, 刘高焕 , 等. 基于出租车GPS 数据的居民就医时空特征分析[J]. 地球信息科学学报, 2018,20(8):1111-1122.
[
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
陈建国, 周素红, 柳林 , 等. 交通拥堵对急救医疗服务时空可达性的影响——以广州市为例[J]. 地理科学进展, 2016,35(4):431-439.
[
|
[34] |
|
[35] |
|
[36] |
温慧敏, 顾涛, 王志丽 , 等. 北京交通发展年报[R]. 北京:北京交通北京, 2018.
[
|
[37] |
李佳贤, 陈艳艳, 韩志玲 , 等. 北京市居民初诊就医出行行为特征分析[J]. 交通科技与经济, 2019,21(5):34-38.
[
|
[38] |
许欣悦, 曾多, 田玮 , 等. 北京某三甲医院预约挂号对患者候诊时间的影响分析[J]. 中国医院管理, 2015,35(10):38-40.
[
|
[39] |
苑继承, 高湘伟, 石岳琴 . 门诊患者挂号与就诊时间调查分析[J]. 第四军医大学学报, 2005,26(1):83-85.
[
|
[40] |
中华人民共和国卫生部. 医院分级管理办法[R]. 北京, 1989.
[ Chinese Ministry of Health. Measures for hierarchical management of hospitals[R]. Beijing, 1989. ]
|
[41] |
|
[42] |
|
[43] |
靳海涛, 金凤君, 陈卓 , 等. 基于换乘链断裂点时空信息的公交换乘行为识别[J]. 交通运输工程学报, 2018,18(5):176-184.
[
|
[44] |
史华英, 李习平 . 患者就医时间影响就医决策的调查研究[J]. 社区医学杂志, 2016,14(7):41-43.
[
|
[45] |
熊俊浩, 夏曦, 程小琴 , 等. 基于结构方程模型的患者选择医院影响因素研究[J]. 中国卫生事业管理, 2012,29(2):84-87.
[
|
[46] |
王森 . 我国居民的就医行为及其影响因素研究——基于CHNS调查面板数据的分析[J]. 西北人口, 2015(3):32-36.
[
|
[47] |
京医通大数据中心. 2017京医通就医数据报告[R]. 北京, 2018.
[ Jingyitong big data center. 2017 Jingyitong medical report[R]. Beijing, 2018. ]
|
/
〈 | 〉 |