分形城市研究进展:从几何形态到网络关联
张 红(1981— ),女,湖北鄂州人,博士,副教授,主要从事空间复杂系统、城市地理学、空间信息量算研究。 |
收稿日期: 2020-04-01
要求修回日期: 2020-04-18
网络出版日期: 2020-06-10
基金资助
国家自然科学基金项目(51878558)
四川省科技支撑计划项目(2020YJ0325)
版权
Advances in Fractal Cities: A Shift from Morphology to Network
Received date: 2020-04-01
Request revised date: 2020-04-18
Online published: 2020-06-10
Supported by
National Natural Science Foundation of China(51878558)
The Program of Science and Technology of Sichuan Province, China(2020YJ0325)
Copyright
城市是人类文明最主要的聚集地,也是一个开放复杂演化巨系统,认识其空间复杂性成为城市科学研究的热点和前沿。城市研究正呈现“从位置和场所向关联和流,从物质空间向城市网络空间”的转向。人类对城市的认识也从“空间是机器”转向“城市有机生命体”。分形是大自然的语言和地理学第四代语言,是挖掘城市空间自组织规律的有效工具,在揭示城市有机体复杂演化机制方面发挥重要作用。目前分形城市研究以指标构建和实证分析为主,缺乏系统的梳理和回顾;内容上侧重几何分形,复杂城市网络视角下的结构分形研究薄弱。本文简要回顾了近30余年来分形城市研究的发展历程,梳理了分形城市研究脉络:从城市形态的几何分形到城市结构与关联的网络分形,从静态分形特征到动态异速生长,并展望了分形城市未来研究方向。
张红 , 蓝天 , 李志林 . 分形城市研究进展:从几何形态到网络关联[J]. 地球信息科学学报, 2020 , 22(4) : 827 -841 . DOI: 10.12082/dqxxkx.2020.200160
The city is an accumulation of human civilization. It is also a highly complex system where a large number of agents interact, leading to a form and dynamics seemingly difficult to understand. Many studies in geography, ecology, sociology, economy and physics have been carried out to explore the general rules or regularities beneath the large number and the diverse agents operating in a city. It is widespread accepted that cities are an emergent phenomenon ruled by self-organization. As the language of nature and the fourth generation language of geography, fractal geometry has been a very powerful tool to capture the self-organized properties of cities. Most of the current studies are limited to the geometric fractal, i.e., based on fractal geometry: a shape made of parts similar to the whole in certain ways. Fractal geometry offers the significant advantages of capturing the spatial distribution, expansion, and filling properties of geographical objects in a city, and also describes the relationships between ranks and sizes of cities in an urban system. However, certain information—such as the efficiency of structural organization and the variance of levels of linkage—is ignored. As increasingly noticed by researchers, to better understand the ways a system of cities actually functions, we need to pay more attention to urban networks because current rapid developments of information and technology enable people to connect ever more easily and closely and in many new ways. This article reviews the advances of fractal cities from three aspects, which are geometric fractal, network fractal and evolutionary fractal. The significance and great potentials of fractal theory in urban studies are presented. The main research progress including fractal dimensions, fractal models, empirical studies and fractal cities and fractal urban systems are briefly reviewed, both for geometric and network fractals. As cities keep evolving, we also briefly review the evolutionary fractal cities, that is, the allometric scaling of cities. Based on current limitations on fractal cities, we propose a research agenda for fractal cities including (1) the development of measures and empirical studies on the third type of geographic fractals; (2) the spatial dependence and scale effects of fractal urban networks; (3) the coupling mechanics and influencing factors of fractal urban networks representing physical and non-physical urban spaces;(4) the DNA of a city from the perspective of fractals; and (5) the evolution simulation and policy intervention in fractal cities.
图4 常见的3种几何分形维计算原理示意Fig. 4 Diagrams of the three most commonly used geometric fractal dimensions |
表1 常见的城市空间形态分形维数指标及含义Tab. 1 List of geometric fractal dimensions in urban studies |
研究对象 | 名称 | 公式 | 变量涵义 | 地理意义 | 公式编号 |
---|---|---|---|---|---|
城市形态 | 面积-半径维数 | 为圆半径,为半径范围内的城区面积,为面积-半径维数 | 空间渗滤 | (2) | |
面积-周长维数 | 为圆半径,和分别为半径范围内的城区面积和周长,为面积-周长维数 | 形态紧凑性 | (3) | ||
盒覆盖维数 | 为盒子边长,为覆盖所有城区所需的最少盒子数,为网络结构分形维 | 空间填充能力 | (4) | ||
城市交通 网络 | 长度-半径维数 | 为圆半径,为半径为的地域范围内交通网络总长度,为常系数,即为分维 | 交通密度中心-外围变化 | (5) | |
分枝-半径维数 | 为圆半径,为半径为的圆形区域内交通网络分枝数目,为常数,为交通网络分枝数-半径维数 | 交通网络的区域“渗透”能力 | (6) | ||
盒覆盖维数 | 为盒子边长,为覆盖整个交通网络所需的最少盒子数,为盒覆盖分形维 | 交通网络的空间填充能力 | (7) | ||
信息维数 | 为圆半径,为Shannon信息熵,为信息结构分形维数 | 几何形态不均匀程度 | (8) | ||
城镇体系 | 半径维数 | 为圆半径,为以中心城市为圆心的半径范围内的城镇数目,为半径维数 | 从中心城市向周围腹地的密度衰减特征 | (9) | |
网格维数 | 为网格边长,为被城镇占据的网格数,为网格维数 | 城镇空间分布的均衡性 | (10) | ||
等级维数 | 为城市规模,为规模大于的城市个数,为城市等级体系的分形维数 | 城镇规模分布的异质性 | (11) |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
潘峰华, 方成, 李仙德 . 中国城市网络研究评述与展望[J]. 地理科学, 2019,39(7):1093-1101.
[
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
刘继生, 陈彦光 . 城市地理分形研究的回顾与前瞻[J]. 地理科学, 2000,20(2):166-171.
[
|
[15] |
秦耀辰, 刘凯 . 分形理论在地理学中的应用研究进展[J]. 地理科学进展, 2003,22(4):426-436.
[
|
[16] |
|
[17] |
陈彦光 . 分形城市系统:标度·对称·空间复杂性[M]. 北京: 科学出版社, 2008.
[
|
[18] |
|
[19] |
|
[20] |
|
[21] |
陈彦光, 陈文惠 . GIS与地理现象的分形研究[J]. 东北师大学报(自然科学版), 1998(2):91-96.
[
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
李后强, 艾南山 . 具有黄金分割特征和分形性质的市场网络[J]. 经济地理, 1992,12(4):1-5.
[
|
[27] |
刘继生, 陈彦光 . 城镇体系空间结构的分形维数及其测算方法[J]. 地理研究, 1999,18(2):171-178.
[
|
[28] |
蔡金华, 龙毅, 毋河海 , 等. 基于反S数学模型的地图目标分形无标度区自动确定[J]. 武汉大学学报·信息科学版, 2004,29(3):249-253.
[
|
[29] |
陈彦光, 刘继生 . 城市形态分维测算和分析的若干问题[J]. 人文地理, 2007,22(3):104-109.
[
|
[30] |
刘承良 . 城乡路网的空间复杂性[D]. 武汉:华中师范大学, 2011.
[
|
[31] |
|
[32] |
王江涛, 杨建梅 . 复杂网络的分形研究方法综述[J]. 复杂系统与复杂性科学, 2013,10(4):1-7.
[
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
陈彦光 . 城市异速标度研究的起源,困境和复兴[J]. 地理研究, 2013,32(6):1033-1045.
[
|
[38] |
|
[39] |
|
[40] |
|
[41] |
朱晓华 . 地理空间信息的分形与分维[M]. 北京: 测绘出版社, 2007.
[
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
陈彦光 . 城市形态的分维估算与分形判定[J]. 地理科学进展, 2017,36(5); 529-539.
[
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
岳文泽, 徐建华, 司有元 等. 分形理论在人文地理学中的应用研究[J]. 地理学与国土研究, 2001,17(2):51-56.
[
|
[54] |
刘继生, 陈彦光 . 城市,分形与空间复杂性探索[J]. 复杂系统与复杂性科学, 2004,1(3):62-69.
[
|
[55] |
刘继生, 陈彦光 . 作为CAS的复杂城市地理系统的SOC性质[J]. 地理科学, 2007,27(2):129-135.
[
|
[56] |
陈彦光 . 分形城市与城市规划[J]. 城市规划, 2005(2):33-40,51.
[
|
[57] |
陈彦光 . 简单,复杂与地理分布模型的选择[J]. 地理科学进展, 2015,34(3):321-329.
[
|
[58] |
刘承良, 余瑞林, 段德忠 . 武汉城市圈城乡道路网分形的时空结构[J]. 地理研究, 2014,33(4):777-788.
[
|
[59] |
刘承良, 殷美元, 黄丽 . 基于多中心性分析的中国交通网络互补性的空间格局[J]. 经济地理, 2018,38(10):21-28.
[
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
冒卓影, 冒亚龙, 何镜堂 . 国外分形建筑研究与展望[J]. 建筑师, 2016,2(4):13-20.
[
|
[67] |
|
[68] |
|
[69] |
赵晶, 徐建华, 梅安新 , 等. 上海市土地利用结构和形态演变的信息熵与分维分析[J]. 地理研究, 2004,23(2):137-146.
[
|
[70] |
刘承良, 段德忠 . 武汉城市圈道路网空间生长的分形研究. 交通运输系统工程与信息, 2013,13(5); 185-193.
[
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
毋河海 . 扩展分维在地图信息综合中的应用[J]. 测绘科学, 2010,35(4):10-13.
[
|
[78] |
|
[79] |
|
[80] |
|
[81] |
修春亮, 魏冶 , 等. “流空间”视角的城市与区域结构[M]. 北京: 科学出版社, 2015.
[
|
[82] |
程昌秀, 史培军, 宋长青 , 等. 地理大数据为地理复杂性研究提供新机遇[J]. 地理学报, 2018,73(8):1397-1405.
[
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
|
[103] |
|
[104] |
|
[105] |
|
[106] |
|
[107] |
冯舒, 孙然好, 陈利顶 . 基于土地利用格局变化的北京市生境质量时空演变研究[J]. 生态学报, 2018,38(12):4167-4179.
[
|
[108] |
|
[109] |
|
[110] |
|
[111] |
|
[112] |
|
[113] |
|
[114] |
|
[115] |
宋长青, 程昌秀, 杨晓帆 , 等. 理解地理“耦合”实现地理“集成”[J]. 地理学报, 2020,75(1):3-13.
[
|
[116] |
张童, 姚士谋, 胡伟平 , 等. 基于交通可达性的广佛都市区城市扩展的模拟与分析[J]. 地理科学, 2018,38(5):737-746.
[
|
[117] |
黎夏, 刘小平 . 基于案例推理的元胞自动机及大区域城市演变模拟[J]. 地理学报, 2007,62(10):1097-1109.
[
|
[118] |
冯永玖, 刘妙龙, 童小华 , 等. 基于核主成分元胞模型的城市演化重建与预测[J]. 地理学报, 2010,65(6):665-675.
[
|
[119] |
|
/
〈 |
|
〉 |