基于潜在受害者动态时空分布的街面接触型犯罪研究
柳 林(1965— ),男,湖南湘潭人,博士,教授,博导,主要从事犯罪空间模拟、多智能体模拟、GIS应用等研究。 |
收稿日期: 2019-11-21
要求修回日期: 2020-02-03
网络出版日期: 2020-06-10
基金资助
广州市科技计划项目(201804020016)
国家重点研发计划项目(2018YFB0505500)
国家重点研发计划项目(2018YFB0505503)
国家自然科学基金重点项目(41531178)
广东省自然科学基金研究团队项目(2014A030312010)
国家自然科学基金项目(41901177)
广东省自然科学基金项目(2019A1515011065)
版权
Explaining Street Contact Crime based on Dynamic Spatio-Temporal Distribution of Potential Targets
Received date: 2019-11-21
Request revised date: 2020-02-03
Online published: 2020-06-10
Supported by
Key Project of Science and Technology Program of Guangzhou City, China(201804020016)
National Key Research an Development Program of China(2018YFB0505500)
National Key Research an Development Program of China(2018YFB0505503)
Key Program of National Natural Science Foundation of China(41531178)
Research Team Program of Natural Science Foundation of Guangdong Province, China(2014A030312010)
National Natural Science Foundation of China(41901177)
Natural Science Foundation of Guangdong Province, China(2019A1515011065)
Copyright
街面接触型犯罪是指犯罪者在街面通过采取与受害者身体接触的方式而实施的违反法律的行为,已有文献研究利用了不同类型的大数据代表的周遭人口表征街面接触型犯罪中“潜在受害者”因素,但由于数据的局限性,无法应用在微观的空间尺度上的街面接触型犯罪研究。微信热力图是具有高时空分辨率和高人口覆盖度,能动态地反映人流量热度的程序。因此,本文以经济发达的ZG市的XT街道为例,结合日常活动理论,并基于微信热力图数据代表的周遭人口表征的“潜在受害者”因素,首先定性地描述和识别街面接触型犯罪的时空分布特征,然后划分不同时段分析街道街面接触型犯罪的影响因素。研究发现:① 街面接触型犯罪案件存在时空的集聚性,街道街面接触型犯罪在晚上(18:00—23:59)是高发期,在白天(07:00—17:59)是低发期,在22:00—22:59数量达到最大值,主要聚集在城中村区域,且不同时期的影响因素存在一定的差异;② 微信人口数量在所有时期均对街面接触型犯罪存在显著的正向影响,其代表的周遭人口能很好地表征日常活动理论中的“潜在受害者”因素,且在凌晨—清晨(00:00—06:59)对街面接触型犯罪的影响最大;③ 不同场所对街面接触型犯罪的影响存在时间上的差异,餐饮点在晚上对街面接触型犯罪存在显著的正向影响,KTV、健身房和公交站点分别对应在凌晨—清晨、白天与晚上对街面接触型犯罪有显著的正向影响,而休闲会所在凌晨、清晨、晚上均有显著的影响,与最近巡逻驻点的距离仅在晚上时期显著影响街面接触型犯罪。本文的研究结论可为警方采用微信热力图来分析街面接触型犯罪和经济发达地区警方部署提供参考依据。
柳林 , 梁斯毅 , 宋广文 . 基于潜在受害者动态时空分布的街面接触型犯罪研究[J]. 地球信息科学学报, 2020 , 22(4) : 887 -897 . DOI: 10.12082/dqxxkx.2020.190709
Street contact crime refers to violations of the law committed by offenders through directly contact with victims in the street such as pickpocketing, robbery and snatch, etc, which is one of the common crimes in China. It is assumed that street contact crime is the result of interaction among motivated offenders, potential targets and absence of capable guardians. Different types of big data are employed in previous studies as ambient population to represent the potential targets which is one of the essential elements in the routine activity theory. However, these types of big data can not be applied in a micro-scale study of street contact crime because of their limitations. This study aims to fill this gap by using a new type of big data, WeChat heat map, an internet application which shows demographic distribution and changes dynamically with high spatial-temporal resolution to study the street contact crime in XT, ZG city, based on dynamic spatio-temporal distribution of potential Targets. The spatio-temporal pattern of street contact crime in XT, ZG city and their influencing factors were revealed. Street contact crime data, Points of Interest (POI) and data of house prices in XT, ZG city were used in this study as well. The whole day is divided into three intervals (wee hours: 00:00-06:59, daytime:07:00-17:59, night:18:00-23:59) and negative binomial regression models are built for the three intervals accordingly. It is demonstrated that the spatio-temporal distribution of street contact crime in XT, ZG city aggregates obviously. Street contact crime in XT, ZG city mainly concentrate in urban village and night is the peak period while daytime is the low period. The count of street contact crime in XT, ZG city reach its maximum between 22:00 and 22:59. Factors have different impacts on street contact crime from interval to interval. During the wee hours, WeChat population,KTV and leisure Club have significant positive impact on street contact crime. In the daytime, WeChat population and gym have significant positive impact on street contact crime. At night, WeChat population, restaurants, Leisure Club, bus station and distance to the nearest security department have significant positive impact on street contact crime. Others factors such as internet café, shopping mall, house prices and length of road have no significant impact on street contact crime in the whole day. WeChat population as an ambient population represent the potential targets well in routine activity theory as it has significant positive impact on street contact crime in the whole day.
表1 变量的描述统计Tab. 1 Descriptive statistics of dependent and independent variables |
变量 | 平均值 | 方差 | 最小值 | 最大值 |
---|---|---|---|---|
街面接触型犯罪数量/件 | ||||
00:00—06:59 | 1.16 | 7.34 | 0 | 29 |
07:00—17:59 | 1.12 | 2.77 | 0 | 9 |
18:00—23:59 | 1.08 | 4.50 | 0 | 15 |
微信人口(百人) | ||||
00:00—06:59 | 7.21 | 44.16 | 0.29 | 33.12 |
07:00—17:59 | 29.34 | 427.87 | 0.80 | 97.16 |
18:00—23:59 | 17.37 | 178.59 | 0.64 | 65.53 |
餐饮点/个 | 0.70 | 1.62 | 0 | 8 |
网吧/个 | 0.08 | 0.13 | 0 | 3 |
健身房/个 | 0.02 | 0.02 | 0 | 1 |
KTV/个 | 0.01 | 0.08 | 0 | 2 |
休闲会所/个 | 0.06 | 0.07 | 0 | 2 |
购物场所/个 | 1.73 | 8.88 | 0 | 17 |
公交站点/个 | 0.19 | 0.25 | 0 | 3 |
与最近巡逻驻点的距离/km | 0.37 | 0.11 | 0 | 1.34 |
平均房屋价格/百万元 | 2.53 | 0.52 | 0.87 | 5.29 |
道路长度/km | 0.70 | 0.50 | 0 | 6.76 |
表2 不同时段街面接触型犯罪负二项回归模型结果Tab. 2 Negative binomial regression model for different time intervals of street contact crime |
变量 | 凌晨—清晨(00:00—06:59) | 白天(07:00—17:59) | 晚上(18:00—23:59) | ||||||
---|---|---|---|---|---|---|---|---|---|
B | IRR | B | IRR | B | IRR | ||||
常数 | -2.05* | 0.13 | -1.02 | 0.36 | -0.85 | 0.42 | |||
微信人口 | 0.12*** | 1.13 | 0.03*** | 1.03 | 0.04*** | 1.04 | |||
餐饮点 | 0.10 | 1.10 | 0.07 | 1.07 | 0.27*** | 1.31 | |||
网吧 | -0.15 | 0.86 | 0.22 | 1.25 | -0.34 | 0.70 | |||
健身房 | -0.31 | 0.73 | 0.99* | 2.69 | 0.08 | 1.08 | |||
KTV | 1.22** | 3.38 | 0.02 | 1.02 | 0.89 | 2.44 | |||
休闲会所 | 0.84* | 2.31 | 0.22 | 1.25 | 0.77* | 2.16 | |||
购物场所 | 0.02 | 1.02 | 0.03 | 1.03 | -0.01 | 0.99 | |||
公交站点 | 0.34 | 1.43 | 0.24 | 1.28 | 0.64*** | 1.89 | |||
与最近巡逻驻点的距离 | 0.46 | 1.58 | 0.38 | 1.46 | 0.62* | 1.86 | |||
平均房屋价格 | 0.15 | 1.17 | -0.16 | 0.86 | -0.31 | 0.73 | |||
道路长度 | 0.11 | 1.11 | 0.07 | 1.07 | 0.00 | 1.00 | |||
AIC | 612.18 | 628.35 | 578.95 |
注:***表示P< 0.001,**表示P< 0.01,*表示P< 0.05,B为模型系数。 |
[1] |
姜超, 唐焕丽, 柳林 . 中国犯罪地理研究述评[J]. 地理科学进展, 2014,33(4):561-573.
[
|
[2] |
|
[3] |
徐冲, 柳林, 周素红 , 等. DP半岛街头抢劫犯罪案件热点时空模式[J]. 地理学报, 2013,68(12):1714-1723.
[
|
[4] |
徐冲, 柳林, 周素红 . DP半岛街头抢劫案件的临近重复发生模式[J]. 地理研究, 2015,34(2):384-394.
[
|
[5] |
毛媛媛, 丁家骏 . 抢劫与抢夺犯罪行为时空分布特征研究——以上海市浦东新区为例[J]. 人文地理, 2014,29(1):49-54.
[
|
[6] |
|
[7] |
郑文升, 卓蓉蓉, 罗静 , 等. 基于空间句法的武汉城区“两抢一盗”犯罪分布环境[J]. 地理学报, 2016,71(10):1710-1720.
[
|
[8] |
刘大千, 宋伟, 修春亮 . 长春市“两抢两盗”犯罪的空间分析[J]. 地理科学, 2014,34(11):1344-1352.
[
|
[9] |
|
[10] |
徐冲, 柳林, 周素红 , 等. 微观空间因素对街头抢劫影响的空间异质性——以DP半岛为例[J]. 地理研究, 2017,36(12):2492-2504.
[
|
[11] |
|
[12] |
|
[13] |
肖露子, 柳林, 周素红 , 等. ZG市工作日地铁站点扒窃案件的时空分布及其影响因素[J]. 地理科学, 2018,38(8):1227-1234.
[
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
申犁帆, 王烨, 张纯 , 等. 轨道站点合理步行可达范围建成环境与轨道通勤的关系研究——以北京市44个轨道站点为例[J]. 地理学报, 2018,73(12):2423-2439.
[
|
[21] |
腾讯 , 2018微信年度数据报告[ED/OL].[ 2019-01-09]. http://www.xinhuanet.com//zgjx/2019-01/10/c_1377326 68.htm.
[ Tencent. 2018 WeChat Annual Data Report [ED/OL]. [ 2019- 01- 09]. http://www.xinhuanet.com//zgjx/ 2019-01/10/c_137732668.htm.
|
[22] |
|
[23] |
|
[24] |
申犁帆, 张纯, 李赫 , 等. 城市轨道交通通勤与职住平衡状况的关系研究——基于大数据方法的北京实证分析[J]. 地理科学进展, 2019,38(6):791-806.
[
|
[25] |
宋广文, 肖露子, 周素红 , 等. 居民日常活动对扒窃警情时空格局的影响[J]. 地理学报, 2017,72(2):356-367.
[
|
[26] |
柳林, 杜方叶, 肖露子 , 等. 不同类型道路密度对公共空间盗窃犯罪率的影响——基于ZG市的实证研究[J]. 人文地理, 2017,32(6):32-38.
[
|
[27] |
杨刚斌, 柳林, 何深静 , 等. 广州门禁小区入室盗窃受害率与内部环境分析[J]. 人文地理, 2016,31(3):45-51.
[
|
[28] |
肖露子, 柳林, 宋广文 , 等. 基于理性选择理论的社区环境对入室盗窃的影响研究[J]. 地理研究, 2017,36(12):2479-2491.
[
|
[29] |
陈强 . 高级计量经济学及Stata应用[M]. 北京: 高等教育出版社, 2010.
[
|
[30] |
|
[31] |
|
[32] |
|
[33] |
王雨晨, 过仲阳, 王媛媛 . 基于随机森林的犯罪风险预测模型研究[J]. 华东师范大学学报(自然科学版), 2017(4):89-96.
[
|
[34] |
柳林, 刘文娟, 廖薇薇 , 等. 基于随机森林和时空核密度方法的不同周期犯罪热点预测对比[J]. 地理科学进展, 2018,37(6):761-771.
[
|
/
〈 | 〉 |