高铁影响下的珠江三角洲城市群经济空间格局的多维度分析
阮杰儿(1995— ),女,广东中山人,硕士生,研究方向为交通地理与GIS应用。E-mail:rjieer@126.com |
收稿日期: 2019-09-06
要求修回日期: 2020-02-17
网络出版日期: 2020-07-25
基金资助
国家重点研发计划项目(2018YFB2100703)
广州市重点科技计划项目(20180203008)
版权
A Multidimensional Analysis of Economic Spatial Pattern of Pearl River Delta Urban Agglomeration under the Influence of High-Speed Railway
Received date: 2019-09-06
Request revised date: 2020-02-17
Online published: 2020-07-25
Supported by
National Key Research and Development Program of China(2018YFB2100703)
Guangzhou Key Science and Technology Program(20180203008)
Copyright
深入研究高铁对珠江三角洲(简称珠三角)城市群区域经济空间格局的影响,对挖掘高铁与区域经济耦合关系具有一定的科学价值。本文基于2010、2014、2018年珠三角地区城市面板数据,从区域经济联系、区域优势潜力及区域经济空间平稳性3个维度,运用引力模型、区位优势潜力模型、Theil系数等技术模型和方法,综合测度高铁对珠三角城市群区域经济空间格局的影响。研究结果表明:① 珠三角城市间经济联系强度随年份的递增而呈现上升的趋势,南北向联系强于东西向联系,并逐渐出现1个经济联系核心区、3个经济联系副关联区和1个经济增长辐射区;② 珠三角市际间区位优势潜力差距逐渐拉大,其中东莞、中山等经济实力较强、城市地域规模、人口规模较小且地理位置优越的二三线城市在高铁运营过程中获得更大的利益;③ 从珠三角区域经济整体差异性来看,区域经济空间格局异质性呈先扩大后缩小趋势;从区内群体差异性来看,一二线城市之间经济发展水平差异呈先大幅上升后小幅下降趋势;二三线城市之间经济发展水平差异呈下降趋势。该研究将对未来交通规划提供参考。
阮杰儿 , 陈颖彪 , 千庆兰 , 杨智威 . 高铁影响下的珠江三角洲城市群经济空间格局的多维度分析[J]. 地球信息科学学报, 2020 , 22(5) : 1023 -1032 . DOI: 10.12082/dqxxkx.2020.190498
High-speed rail has strong impact on the spatial pattern of regional economy in the Pearl River Delta urban agglomeration. Exploring the coupling of high-speed rail and regional economy is thus of great scientific value. In this paper, we comprehensively quantified the impact of high-speed rail on the spatial pattern of regional economy over the Pearl River Delta urban agglomeration using cities panel data in 2010, 2014, and 2018. We quantified the regional economic connection, regional advantage potential, and regional economic space stability, respectively, using gravity model, regional superiority potential model, and Theil coefficient. Our results show that: (1) the intensity of economic relations between cities in the Pearl River Delta increased over years, with a stronger economic relations along north-south direction than the east-west direction. Core zones of economic relations included Guangzhou, Shenzhen, Dongguan, and Foshan.The sub-zones of economic relations were represented by Zhongshan, Zhaoqing, and Huizhou. And the radiated zones of economic relations covered the whole Pearl River Delta. The regional influence of high-speed rail on the economic development of the Pearl River Delta cities was also uneven. Guangzhou, Shenzhen, Dongguan, Foshan, and other cities with strong economic strength occupied the core positions. As a result, the economic ties between other cities may need to be improved in the future; (2) with the construction and operation of high-speed rail, the regional advantage of each city over surrounding cities increased greatly from 2010 to 2018. However, the differences in regional advantages of each cityalso increased gradually. Dongguan, Zhongshan and other second- and third-tier cities with strong economic strength, small urban geographical scale, small population scale, and superior geographical location benefited most. These cities had great potential to be new regional growth centers in future; (3) for the overall difference of regional economy in the Pearl River Delta, the spatial heterogeneity of regional economy increased first and then decreased. For the group differences in the area, the difference of economic development levels between first-and second-tier cities showed a significant increase first and a slight decrease trend then. The difference of economic development levels between second-and third-tier cities showed a decreasing trend. The study provide useful references for future transportation planning.
表1 2010—2014年珠三角城市群市际间经济联系总量年均增长率Tab. 1 The annual growth rate of total economic links between cities in the Pearl River Delta urban agglomeration from 2010 to 2014 (%) |
城市组 | 广州 | 东莞 | 深圳 | 佛山 | 肇庆 | 惠州 | 中山 | 珠海 | 江门 |
---|---|---|---|---|---|---|---|---|---|
广州 | — | 25.88 | 88.10 | 21.07 | 13.56 | 47.05 | 87.77 | 58.89 | 73.62 |
东莞 | 25.88 | — | 97.05 | 8.31 | 11.77 | 12.11 | 12.57 | 14.21 | 9.71 |
深圳 | 88.10 | 97.05 | — | 38.56 | 14.65 | 87.80 | 36.14 | 20.21 | 22.32 |
佛山 | 21.07 | 8.31 | 38.56 | — | 11.40 | 11.74 | 145.60 | 49.75 | 99.72 |
肇庆 | 13.56 | 11.77 | 14.65 | 11.40 | — | 18.39 | 13.35 | 13.74 | 11.17 |
惠州 | 47.05 | 12.11 | 87.80 | 11.74 | 18.39 | — | 17.20 | 15.62 | 8.61 |
中山 | 87.77 | 12.57 | 36.14 | 145.60 | 13.35 | 17.20 | — | 56.01 | 128.83 |
珠海 | 58.89 | 14.21 | 20.21 | 49.75 | 13.74 | 15.62 | 56.01 | — | 4.33 |
江门 | 73.62 | 9.71 | 22.32 | 99.72 | 11.17 | 8.61 | 128.83 | 4.33 | — |
表2 2014—2018年珠三角城市群市际间经济联系总量年均增长率Tab. 2 The annual growth rate of total economic links between cities in the Pearl River Delta urban agglomeration from 2014 to 2018 (%) |
城市组 | 广州 | 东莞 | 深圳 | 佛山 | 肇庆 | 惠州 | 中山 | 珠海 | 江门 |
---|---|---|---|---|---|---|---|---|---|
广州 | — | 10.40 | 13.60 | 10.38 | 78.53 | 10.06 | 38.36 | 18.79 | 10.44 |
东莞 | 10.40 | — | 12.24 | 9.06 | 29.43 | 46.95 | 8.07 | 12.37 | 9.12 |
深圳 | 13.60 | 12.24 | — | 37.43 | 85.51 | 11.89 | 15.74 | 28.35 | 12.27 |
佛山 | 10.38 | 9.06 | 37.43 | — | 96.45 | 22.36 | 8.05 | 12.35 | 9.09 |
肇庆 | 78.53 | 29.43 | 85.51 | 96.45 | — | 6.73 | 39.65 | 35.08 | 7.10 |
惠州 | 10.06 | 46.95 | 11.89 | 22.36 | 6.73 | — | 19.99 | 24.41 | 8.78 |
中山 | 38.36 | 8.07 | 15.74 | 8.05 | 39.65 | 19.99 | — | 21.57 | 23.92 |
珠海 | 18.79 | 12.37 | 28.35 | 12.35 | 35.08 | 24.41 | 21.57 | — | 17.28 |
江门 | 10.44 | 9.12 | 12.27 | 9.09 | 7.10 | 8.78 | 23.92 | 17.28 | — |
[1] |
王姣娥, 焦敬娟, 黄洁, 等. 交通发展区位测度的理论与方法[J]. 地理学报, 2018,73(4):666-676.
[
|
[2] |
穆成林, 陆林, 黄剑锋, 等. 高铁网络下的长三角旅游交通格局及联系研究[J]. 经济地理, 2015,35(12):193-202.
[
|
[3] |
戴学珍, 吕春阳, 郑伊硕, 等. 交通方式对京津冀空间相互作用贡献率分析[J]. 经济地理, 2019,39(8):36-43.
[
|
[4] |
张楠楠, 徐逸伦. 高速铁路对沿线区域发展的影响研究[J]. 地域研究与开发, 2005,24(3):32-36.
[
|
[5] |
|
[6] |
姜博, 初楠臣, 修春亮, 等. 中国“四纵四横”高铁网络可达性综合评估与对比[J]. 地理学报, 2016,71(4):591-604.
[
|
[7] |
|
[8] |
|
[9] |
赵映慧, 初楠臣, 郭晶鹏, 等. 中国三大城市群高速铁路网络结构与特征[J]. 经济地理, 2017,37(10):68-73.
[
|
[10] |
蒋海兵, 祁毅, 李传武. 中国城市高速铁路客运的空间联系格局[J]. 经济地理, 2018,38(7):26-33.
[
|
[11] |
金凤君, 焦敬娟, 齐元静. 东亚高速铁路网络的发展演化与地理效应评价[J]. 地理学报, 2016,71(4):576-590.
[
|
[12] |
岳洋, 曹卫东, 姚兆钊, 等. 兰新高铁对西北地区可达性及经济联系的影响[J]. 人文地理, 2019,34(1):131-139.
[
|
[13] |
李新光, 黄安民. 高铁对县域经济增长溢出效应的影响研究——以福建省为例[J]. 地理科学, 2018,38(2):233-241.
[
|
[14] |
孟德友, 冯兴华, 文玉钊. 铁路客运视角下东北地区城市网络结构演变及组织模式探讨[J]. 地理研究, 2017,36(7):1339-1352.
[
|
[15] |
|
[16] |
王海江, 苗长虹, 李欣欣. 流视角下中国铁路交通联系空间模拟与格局解析[J]. 经济地理, 2019,39(1):29-36.
[
|
[17] |
孟德友, 魏凌, 樊新生, 等. 河南“米”字形高铁网构建对可达性及城市空间格局影响[J]. 地理科学, 2017,37(6):850-858.
[
|
[18] |
张春民, 王玮强, 李文添, 等. 基于面板数据的兰新高铁区域经济特性分析[J]. 铁道科学与工程学报, 2017,14(1):12-18.
[
|
[19] |
|
[20] |
来逢波. 综合运输体系对区域经济空间格局变迁的影响与优化研究[J]. 工业技术经济, 2012,31(5):76-82.
[
|
[21] |
|
[22] |
贾善铭, 覃成林. 高速铁路对中国区域经济格局均衡性的影响[J]. 地域研究与开发, 2015,34(2):13-20.
[
|
[23] |
王妙妙, 曹小曙. 基于交通通达性的关中—天水经济区县际经济联系测度及时空动态分析[J]. 地理研究, 2016,35(6):1107-1126.
[
|
[24] |
|
[25] |
|
[26] |
|
[27] |
文嫮, 韩旭. 高铁对中国城市可达性和区域经济空间格局的影响[J]. 人文地理, 2017(1):105-114.
[
|
[28] |
方大春, 孙明月. 高速铁路对长三角城市群经济发展影响评估——基于DID模型的实证研究[J]. 华东经济管理, 2016,30(2):42-47.
[
|
[29] |
中国铁路部. 2018 全国铁路运行时刻表[EB/OL]. [2018-07-31].
[ Ministry of railways of China. 2018 National railway timetable[EB/OL].[ 2018-07-31].]
|
[30] |
广东省统计局. 2011-2019广东省统计年鉴[EB/OL]. [2019-01-30].
[ Bureau of statistics of Guangdong province. 2011-2019 Statistical yearbook of Guangdong province[EB/OL].[ 2019-01-30]. ]
|
[31] |
广东省统计局. 2016 珠三角城市群年鉴[EB/OL]. [2016-12-06].
[ Bureau of statistics of Guangdong province. 2016 Statistical yearbook of Pearl River Delta urban agglomeration[EB/OL].[ 2016-12-06]. ]
|
[32] |
广东省人民政府. 2019 广东省地市政府工作报告[EB/OL]. [2019-01-21].
[ People's government of Guangdong province. 2019 Report on the work of the local government of Guangdong province[EB/OL]. [ 2019-01-21].]
|
[33] |
李国平, 王立明, 杨开忠. 深圳与珠江三角洲区域经济联系的测度及分析[J]. 经济地理, 2001,21(1):33-37.
[
|
[34] |
乔旭宁, 杨娅琳, 杨永菊, 等. 基于DPSIR模型与Theil系数的河南省可持续发展评价[J]. 地域研究与开发, 2017,36(1):18-22,28.
[
|
/
〈 | 〉 |