基于交通网络的乡村中小学优化布局
陈玉龙(1989— ),男,河南栾川人,博士,讲师,主要从事地理计算研究。E-mail:chenyulong0203@163.com |
收稿日期: 2019-08-13
要求修回日期: 2019-12-07
网络出版日期: 2020-07-25
基金资助
国家自然科学基金项目(41671396)
版权
Optimization of Rural Primary and Secondary School Location based on Traffic Network
Received date: 2019-08-13
Request revised date: 2019-12-07
Online published: 2020-07-25
Supported by
National Natural Science Foundation of China(41671396)
Copyright
合理规划中小学布局是优化教育资源配置、提高办学效益以及实现教育均衡发展的重要途径。本研究针对中国乡村建设的需要和中国多山的地理环境,考虑山地环境对乡村中小学选址的影响,构建多山环境下乡村中小学的区位模型,运用地理信息科学方法,以Visual Studio. Net 2010为开发平台,使用C#语言和ArcGIS Engine 10.0组件库,同时结合MATLAB编程,开发出基于交通网络的乡村中小学区位优化系统。最后将系统应用于贵州省某镇的小学布局优化中,分别在只考虑已有道路、假设道路可升级、假设道路可新建或升级3种情景下,通过改进的模拟退火算法,确定新建学校的最佳位置,以及新道路的修建和原有道路的升级情况,从而得到不同情景下各居民点学生的上学耗时。结果表明,交通网络对乡村中小学布局优化具有重要影响,改善交通网络条件能够有效提高学生的就学效率上学速度。
陈玉龙 , 赖志柱 , 王铮 . 基于交通网络的乡村中小学优化布局[J]. 地球信息科学学报, 2020 , 22(5) : 1120 -1132 . DOI: 10.12082/dqxxkx.2020.190443
The rational planning of school location is an important way to optimize the allocation of educational resources, improve the efficiency of school running and realize the balanced development of education. The accessibility must be considered in optimizing the location of rural schools, which is an important difference from the location of urban schools. Many scholars have studied the location problem of rural schools, but most of them have neglected the impact of transportation network conditions on the location of schools. On the basis of previous studies, this study will consider the impact of traffic network on the optimization location of primary schools in mountainous environment. The object of this study is to minimize the total transportation costs for students, construction costs for new schools, construction and upgrade costs for roads on a traffic network. We regard a set of villages as demand nodes exists in a geographical region, a set of roads as transfer links. The road links in the network contain existing and new potential road links. A set of schools exists in the region and it is clearly desired to locate a set of new schools, to construct new road links, to improve the existing road links such that the total investment costs (including the travel costs for students, construction costs for school facilities, construction and upgrading costs for roads) are minimized. Thus, a multi-objective optimization model for this problem is proposed. The multi-objective facility location-network design model constructed in this paper is an extension of FLNDP problem, and also belongs to NP-hard problem. In order to facilitate the model application, this study use geographic information science method, take Visual Studio. Net 2010 as the development platform, use C# language, MATLAB language and ArcGIS Engine 10 component library to develop a location optimization system of rural primary and secondary school based on transportation network. Finally, the system is applied to the optimization of the primary school location of a town in Guizhou province. Aiming at the location optimization problem of rural primary, this paper considers three scenarios (only consider the existing road, assume that the road can be upgraded and the road can be built or upgraded) which are different from the problem of urban primary school location. In geographic calculation, this paper explores an improved multi-objective simulated annealing algorithm to determine the best location of new schools, as well as the construction of new roads and the upgrading of existing roads.
表1 3种算法性能指标值对比Tab. 1 Comparisons of performance indicators of three algorithms |
算法 | NN | MGD | SP | 平均时间/s | |||||
---|---|---|---|---|---|---|---|---|---|
平均值/个 | 总和/个 | 平均值 | 标准方差 | 平均值 | 标准方差 | ||||
MOSA | 7 | 216 | 537.41 | 246.30 | 924.29 | 639.11 | 84.77 | ||
NSGA-II | 15 | 456 | 276.30 | 106.20 | 726.30 | 315.65 | 68.62 | ||
IMOSA | 22 | 647 | 130.60 | 40.12 | 525.14 | 170.04 | 59.53 |
表2 情景1 Pareto最优解对应的方案及目标值Tab. 2 Scheme and objective function value of Pareto optimal solution in scenario 1 |
方案编号 | 新建设施个数 | 设施选址位置 | 旅行成本(第一目标值) | 设施建设成本(第二目标值) |
---|---|---|---|---|
1 | 1 | 1 642 335 | 400 000 | |
2 | 15 | 1 488 424 | 450 000 | |
3 | 1,22 | 1 495 064 | 800 000 | |
4 | 1,15 | 1 331 460 | 850 000 | |
5 | 15,21 | 1 315 524 | 900 000 | |
6 | 15,17 | 1 303 802 | 1 000 000 | |
7 | 15,17,21 | 1 130 902 | 1 450 000 | |
8 | 1,15,21 | 1 158 560 | 1 300 000 | |
9 | 1,11,22 | 1 379 636 | 1 200 000 | |
10 | 1,11,15 | 1 216 032 | 1 250 000 | |
11 | 9,15,17 | 1 121 438 | 1 550 000 | |
12 | 1,15,17 | 1 146 838 | 1 400 000 |
表3 情景2 Pareto最优解对应的方案及目标值Tab. 3 Scheme and objective function value of Pareto optimal solution in scenario 2 |
方案编号 | 新建设施个数 | 设施选址位置 | 旅行成本(第一目标值) | 建设成本(第二目标值) |
---|---|---|---|---|
1 | 15 | 1 295 687 | 559 000 | |
2 | 15 | 1 132 810 | 787 155 | |
3 | 15 | 1 068 135 | 890 765 | |
4 | 15 | 1 002 049 | 991 840 | |
5 | 15 | 864 630 | 1 271 470 | |
6 | 15 | 807 618 | 1 431 305 | |
7 | 15,17 | 1 000 392 | 1 267 605 | |
8 | 15,17 | 855 648 | 1 466 570 | |
9 | 15,17 | 742 158 | 1 687 960 | |
10 | 15,17 | 713 800 | 1 736 255 | |
11 | 15,17 | 655 768 | 1 865 215 | |
12 | 15,17 | 622 996 | 1 981 305 | |
13 | 15,17 | 610 746 | 2 078 610 | |
14 | 15,17 | 593 241 | 2 195 025 | |
15 | 15,17 | 553 786 | 2 313 000 | |
16 | 1,15,17 | 857 898 | 1 712 325 | |
17 | 1,15,17 | 750 337 | 1 874 305 | |
18 | 1,15,17 | 692 305 | 2 003 265 | |
19 | 1,15,17 | 580 291 | 2 118 835 | |
20 | 1,15,17 | 548 536 | 2 199 760 | |
21 | 1,15,17 | 536 285 | 2 297 065 | |
22 | 1,15,17 | 508 400 | 2 458 200 |
表4 情景3 Pareto最优解对应的方案及目标值Tab. 4 Scheme and objective function value of Pareto optimal solution in scenario 3 |
方案编号 | 新建设施个数 | 设施选址位置 | 旅行成本(第一目标值) | 建设成本(第二目标值) |
---|---|---|---|---|
1 | 15 | 969 011 | 1 049 911 | |
2 | 15 | 909 984 | 1 176 466 | |
3 | 15 | 797 970 | 1 292 036 | |
4 | 15 | 764 372 | 1 420 996 | |
5 | 15 | 752 155 | 1 479 340 | |
6 | 15 | 720 408 | 1 560 265 | |
7 | 15 | 689 716 | 1 781 031 | |
8 | 15,17 | 861 953 | 1 458 445 | |
9 | 15,17 | 805 014 | 1 580 320 | |
10 | 15,17 | 717 808 | 1 753 675 | |
11 | 15,17 | 650 227 | 1 782 035 | |
12 | 15,17 | 567 661 | 1 932 035 | |
13 | 15,17 | 549 277 | 2 012 960 | |
14 | 15,17 | 521 388 | 2 174 095 | |
15 | 15,17 | 506 368 | 2 292 070 | |
16 | 15,17,21 | 897 560 | 1 859 931 | |
17 | 15,17,21 | 736 467 | 2 098 156 | |
18 | 15,17,21 | 646 687 | 2 308 041 | |
19 | 15,17,21 | 522 456 | 2 481 955 | |
20 | 15,17,21 | 515 037 | 2 549 215 | |
21 | 15,17,21 | 400 220 | 2 724 416 | |
22 | 15,17,21 | 372 331 | 2 885 551 |
[1] |
|
[2] |
|
[3] |
|
[4] |
彭永明, 王铮. 农村中小学选址的空间运筹[J]. 地理学报, 2013,68(10):1411-1417.
[
|
[5] |
戴军, 苑惠丽, 马颖忆. 西部乡村基础教育设施“场势效应”评价与空间优化——以海东市蒲台乡为例[J]. 农业现代化研究, 2019,40(4):692-701.
[
|
[6] |
戴特奇, 王梁, 张宇超, 等. 农村学校撤并后规模月数对学校优化布局的影响——以北京延庆区为例[J]. 地理科学进展, 2016,35(11):1352-1358.
[
|
[7] |
张煊宜. 基于GIS的教育资源均衡性及其空间布局调整分析——以上海市浦东新区为例[D]. 上海:华东师范大学, 2019.
[
|
[8] |
刘科伟, 史茹, 唐智渊. 基于供需关系的城市边缘区基础教育设施布局研究——以西安市长安区韦曲街道为例[J]. 地域研究与开发, 2018,37(5):83-88.
[
|
[9] |
丁愫, 陈报章. 城市医疗设施空间分布合理性评估[J]. 地球信息科学学报, 2017,19(2):185-196.
[
|
[10] |
詹庆明, 杨爽. 村镇应急公共设施选址布局优化研究[J]. 地球信息科学学报, 2019,21(5):641-653.
[
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
王铮, 吴静. 计算地理学[M]. 北京: 科学出版社, 2016.
[
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
张明明, 赵曙光, 王旭. 一种自适应多目标离散差分进化算法[J]. 计算机工程与应用, 2009,45(26):16-20.
[
|
[27] |
刘思远, 柳景青. 一种新的多目标改进和声搜索优化算法[J]. 计算机工程与应用, 2010,46(34):27-30.
[
|
[28] |
蒋轩. 基于新经济地理学连片特困地区致贫因子分析[D]. 上海:华东师范大学, 2017: 10-24.
[
|
/
〈 | 〉 |