陕西省HFRS疫情时空分异特征及影响要素研究
朱伶俐(1995— ),女,江苏泰州人,硕士生,主要从事遥感与GIS应用研究。E-mail:linglizhu321@sina.com |
收稿日期: 2019-08-03
要求修回日期: 2020-03-03
网络出版日期: 2020-07-25
基金资助
国家自然科学基金项目(41571158)
资源与环境信息系统国家重点实验室自由探索类项目(O8R8B6A0YA)
国家重点研发计划(2016YFC1302602)
版权
Spatiotemporal Variations and Influencing Factors of Hemorrhagic Fever with Renal Syndrome in Shaanxi Province
Received date: 2019-08-03
Request revised date: 2020-03-03
Online published: 2020-07-25
Supported by
National Natural Science Foundation of China(41571158)
State Key Laboratory of Resources and Environment Information Systems, Independent Innovation Project(O8R8B6A0YA)
National Key Research and Development Program(2016YFC1302602)
Copyright
肾综合征出血热(HFRS)主要是由鼠类携带传播汉坦病毒而引起的一类自然疫源性传染病,严重危害着人类健康。陕西省是我国HFRS疫情最严重的省份之一,发病率居全国前列,研究其疫情时空分异和影响要素对指导当地疫情防控具有重要意义。本研究基于2005—2017年县区尺度HFRS发病率数据,采用空间自相关、热点分析等方法分析陕西省疫情时空分异特征,并利用地理探测器探究影响疫情的主要自然环境和社会经济要素。结果表明:2005—2017年陕西省HFRS发病率明显高于全国水平,同时呈现明显的时间波动和空间聚集,平原面积占比、建设用地面积占比、人口密度等因素可以解释约20%的HFRS疫情空间分异;关中平原聚集了陕西省90%以上的高发病县区,其疫情亦呈现明显的空间分异性,主要受降水量、 NDVI、土地利用类型等因素的影响。由此可知,高发病县区聚集、且自然环境和社会经济条件明显不同的关中平原是陕西省HFRS疫情流行的关键地区。因此,建议陕西省HFRS疫情防控应当重点关注降水量、植被状况以及土地利用类型,特别是在土地城镇化水平较高、人口密度较大的关中平原进行有效的防控干预。
朱伶俐 , 任红艳 , 丁凤 , 鲁亮 , 吴思佳 , 崔成 . 陕西省HFRS疫情时空分异特征及影响要素研究[J]. 地球信息科学学报, 2020 , 22(5) : 1142 -1152 . DOI: 10.12082/dqxxkx.2020.190420
Hemorrhagic Fever with Renal Syndrome (HFRS) is a rodent-borne endemic disease caused by Hantavirus, which poses an increasingly serious threat to public health, especially in China. In this country, Shaanxi Province is one of the top regions with the highest HFRS incidence in the past years. It is of great importance to explore the potential influences on the spatiotemporal variations of HFRS epidemics across this province, which would provide useful clues for local authorities making targeted interventions on this disease.The county-level HFRS incidence rates during 2005-2017, as well as some potential natural and socioeconomic variables, were collected and analyzed by using spatial auto-correlation and hot-spot analysis tools as well as a Geodetector tool to explore the spatiotemporal relationships between the incidence rates and the potential variables. The HFRS epidemics in Shaanxi Province were obviously higher than the national level and presented clear temporal fluctuation and spatial clustering at the county scale. More than 90% of the counties with relatively high HFRS incidence rates concentrated in the Guanzhong Plain where obvious spatial heterogeneity was also observed. Some variables including the percentage of plain area and construction land, and population density separately accounted for about 20% of spatial variations of the county-level epidemic across the whole province. By comparison, the spatial pattern of this epidemic in the Guanzhong Plain with no obvious socioeconomic differences was mainly affected by precipitation, normalized difference vegetation index, and land-use types. Thus, the Guanzhong Plain with both spatially clustering higher incidence rates and obviously differentiated natural and socioeconomic conditions was the crucial region of the HFRS prevalence across Shaanxi Province. We suggest that precipitation, vegetation conditions, and land-use types should be heavily considered by local authorities for making effective interventions on this disease across Shaanxi Province, especially in the Guanzhong Plain with relatively high land urbanization and population density.
表1 HFRS发病率分析相关的变量列表Tab. 1 List of variables used in the HFRS incidence analysis |
要素 | 数据 | 变量 | 时间 | 数据源 |
---|---|---|---|---|
气象要素 | 温度 | 年均温度 | 2005—2017 | 中国气象数据网 data.cma.cn |
降水量 | 年均降水量 | 2005—2017 | ||
景观要素 | NDVI | 年度NDVI | 2005—2017 | 中国科学院资源环境科学数据中心资源环境数据云平台 www.resdc.cn |
地形因子 | DEM、坡度、坡向、地形起伏度 | — | ||
地貌类型 | 平原、台地、丘陵、山地 | — | ||
土壤质地 | 砂土、粉砂土、黏土 | — | ||
社会经济要素 | 土地利用类型 | 耕地、林地、水域、建设用地 | 2005、2010、2015 | |
GDP | 公里格网GDP | 2005、2010、2015 | ||
人口密度 | 公里格网人口密度 | 2005、2010、2015 |
注:年份不全的使用相近年份代替。 |
表2 陕西省不同环境变量的交互作用探测Tab. 2 The dominant interactions between different environmental factors in Shaanxi Province |
年份 | 交互作用1 | q | 交互作用2 | q | 交互作用3 | q |
---|---|---|---|---|---|---|
2005 | 平原∩坡向 | 0.727 | 平原∩粉砂土 | 0.710 | 林地∩人口密度 | 0.652 |
2006 | 林地∩人口密度 | 0.624 | 水域∩人口密度 | 0.583 | 台地∩人口密度 | 0.578 |
2007 | 林地∩人口密度 | 0.610 | 平原∩林地 | 0.602 | 平原∩坡度 | 0.598 |
2008 | 平原∩降水量 | 0.603 | 平原∩地形起伏度 | 0.570 | 平原∩林地 | 0.567 |
2009 | 平原∩地形起伏度 | 0.693 | 平原∩林地 | 0.688 | 平原∩坡度 | 0.654 |
2010 | 平原∩地形起伏度 | 0.797 | 平原∩林地 | 0.790 | 平原∩坡度 | 0.763 |
2011 | 平原∩坡度 | 0.786 | 平原∩地形起伏度 | 0.756 | 平原∩林地 | 0.738 |
2012 | 平原∩NDVI | 0.531 | NDVI∩砂土 | 0.505 | 平原∩降水量 | 0.490 |
2013 | 台地∩黏土 | 0.564 | 平原∩温度 | 0.547 | 降水量∩丘陵 | 0.544 |
2014 | 平原∩降水量 | 0.662 | 平原∩坡度 | 0.659 | 平原∩温度 | 0.620 |
2015 | 平原∩坡度 | 0.671 | NDVI∩建设用地 | 0.657 | 平原∩温度 | 0.653 |
2016 | 平原∩温度 | 0.730 | 平原∩坡度 | 0.712 | 林地∩建设用地 | 0.710 |
2017 | 耕地∩建设用地 | 0.613 | 平原∩坡度 | 0.603 | 地形起伏度∩建设用地 | 0.592 |
表3 关中平原不同环境变量的交互作用探测Tab. 3 The dominant interactions between different environmental factors in Guanzhong Plain |
年份 | 交互作用1 | q | 交互作用2 | q | 交互作用3 | q |
---|---|---|---|---|---|---|
2005 | 降水量∩建设用地 | 0.885 | 林地∩人口密度 | 0.826 | 林地∩GDP | 0.818 |
2006 | NDVI∩温度 | 0.906 | 温度∩建设用地 | 0.855 | 黏土∩建设用地 | 0.839 |
2007 | 降水量∩建设用地 | 0.837 | 降水量∩人口密度 | 0.820 | 降水量∩黏土 | 0.793 |
2008 | 降水量∩建设用地 | 0.910 | 温度∩降水量 | 0.862 | 温度∩水域 | 0.857 |
2009 | 降水量∩建设用地 | 0.874 | 降水量∩人口密度 | 0.869 | 降水量∩耕地 | 0.835 |
2010 | 林地∩人口密度 | 0.850 | NDVI∩建设用地 | 0.829 | 降水量∩建设用地 | 0.823 |
2011 | 降水量∩耕地 | 0.877 | 水域∩粉砂土 | 0.804 | 降水量∩黏土 | 0.794 |
2012 | 降水量∩水域 | 0.911 | 降水量∩黏土 | 0.839 | 降水量∩耕地 | 0.810 |
2013 | NDVI∩水域 | 0.754 | 降水量∩水域 | 0.700 | 降水量∩未利用地 | 0.694 |
2014 | NDVI∩粉砂土 | 0.788 | NDVI∩温度 | 0.767 | 降水量∩NDVI | 0.764 |
2015 | 降水量∩黏土 | 0.872 | 降水量∩建设用地 | 0.841 | 温度∩降水量 | 0.822 |
2016 | 降水量∩砂土 | 0.841 | 降水量∩粉砂土 | 0.841 | 林地∩建设用地 | 0.828 |
2017 | 林地∩人口密度 | 0.808 | 降水量∩耕地 | 0.731 | NDVI∩砂土 | 0.731 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
黄立勇. 中国肾综合征出血热流行特征及周期性研究[D]. 北京:中国疾病预防控制中心, 2012.
[
|
[7] |
刘晓冬. 中国肾综合征出血热时空分布及气候因素对辽宁省HFRS影响的研究[D]. 济南:山东大学, 2012.
[
|
[8] |
|
[9] |
|
[10] |
陈化新, 罗成旺, 陈富, 等. 中国肾综合征出血热监测研究[J]. 中国公共卫生, 1999,15(7):616-623.
[
|
[11] |
朱妮, 刘峰, 邱琳, 等. 2011-2015年陕西省肾综合征出血热时空聚集性分析[J]. 现代预防科学, 2017,44(9):1537-1540,1552.
[
|
[12] |
|
[13] |
|
[14] |
|
[15] |
闫磊, 黄华国, 张文义, 等. 肾综合征出血热疫情与NDVI的时间关系——以内蒙古自治区大杨树镇为例[J]. 遥感学报, 2009,13(5):873-886.
[
|
[16] |
肖洪, 林晓玲, 高立冬, 等. 湘江中下游肾综合征出血热传播风险预测和环境危险因素分析[J]. 地理科学, 2013,33(1):123-128.
[
|
[17] |
|
[18] |
|
[19] |
张清敏, 禹长兰, 赵晓蒙, 等. 2000—2015年安丘市肾综合征出血热流行特征和趋势分析[J]. 预防医学论坛, 2016,22(5):388-391.
[
|
[20] |
王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017,72(1):116-134.
[
|
[21] |
通拉嘎, 徐新良, 付颖, 等. 地理环境因子对螺情影响的探测分析[J]. 地理科学进展, 2014,33(5):625-635.
[
|
[22] |
张湘雪, 王丽, 尹礼唱, 等. 京津唐地区HFMD时空变异分析与影响因子探测[J]. 地球信息科学学报, 2019,21(3):398-406.
[
|
[23] |
陕西省统计局. 陕西统计年鉴2018[M]. 北京: 中国统计出版社, 2018.
[ Statistical Bureau of Shaanxi Province. Shaanxi statistical yearbook 2018[M]. Beijing: China Statistical Press, 2018. ]
|
[24] |
中国气象数据网[EB/OL].( http://data.cma.cn. )
[ China meteorological data service centre[EB/OL]. ( http://data.cma.cn. )]
|
[25] |
资源环境数据云平台[EB/OL].( http://www.resdc.cn. )
[ Resource and environment data cloud platform[EB/OL].( http://www.resdc.cn. )]
|
[26] |
封志明, 唐焰, 杨艳昭, 等. 中国地形起伏度及其与人口分布的相关性[J]. 地理学报, 2007,62(10):1073-1082.
[
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
阎世杰, 王欢, 焦珂伟. 京津冀地区植被时空动态及定量归因[J]. 地球信息科学学报, 2019,21(5):767-780.
[
|
[32] |
刘彦随, 李进涛. 中国县域农村贫困化分异机制的地理探测与优化决策[J]. 地理学报, 2017,72(1):161-173.
[
|
[33] |
许勤勤. 山东省肾综合征出血热流行特征及其区域风险预测[D]. 济南:山东大学, 2018.
[
|
[34] |
高燕虎, 吴春燕. 北京地区3种典型质地土壤水分变化规律[J]. 安徽农业科学, 2012,40(4):2034-2036.
[
|
[35] |
余学祥, 吴锦松. 安庆市耕地土壤质地概况及其对土壤肥力的影响[J]. 安徽农学通报, 2006,12(12):111-113.
[
|
[36] |
|
[37] |
李雪. 渭河流域肾综合征出血热时空特征及环境影响因素研究[D]. 西安:第四军医大学, 2018.
[
|
/
〈 | 〉 |