遥感科学与应用技术

新疆沙漠地区地表宽波段比辐射率遥感估算

  • 阿依尼格尔·亚力坤 , 1, 2 ,
  • 买买提艾力·买买提依明 2 ,
  • 刘素红 1 ,
  • 杨帆 3 ,
  • 何清 3 ,
  • 刘永强 , 1, 2, *
展开
  • 1.新疆大学资源与环境科学学院,乌鲁木齐 830046
  • 2.中国气象局乌鲁木齐沙漠气象研究所/中国气象局塔克拉玛干沙漠气象野外科学试验基地,乌鲁木齐 830002
  • 3.新疆维吾尔自治区气象局,乌鲁木齐 830002
*刘永强(1969— ),男,新疆乌鲁木齐人,博士后,教授,主要从事陆面过程参数化及模拟研究。E-mail:

阿依尼格尔·亚力坤(1994— ),女,新疆乌鲁木齐人,硕士生,主要从事地表特征参数及能量通量反演研究。E-mail:

收稿日期: 2019-07-16

  要求修回日期: 2020-02-02

  网络出版日期: 2020-10-25

基金资助

国家自然科学基金项目(41675011)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

Remote Sensing Estimation of Surface Broadband Emissivity over the Deserts in Xinjiang

  • Aynigar· yalkun , 1, 2 ,
  • ALI Mamtimin 2 ,
  • LIU Suhong 1 ,
  • YANG Fan 3 ,
  • HE Qing 3 ,
  • LIU Yongqiang , 1, 2, *
Expand
  • 1. College of Resources & Environmental Sciences, Xinjiang University, Urumqi 830046, China
  • 2. Taklimakan Desert Meteorology Field Experiment Station of CMA, Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China
  • 3. Uygur Autonomous Regional Meteorological Service, Urumqi 830002, China
*LIU Yongqiang, E-mail:

Received date: 2019-07-16

  Request revised date: 2020-02-02

  Online published: 2020-10-25

Supported by

National Natural Science Foundation of China(41675011)

Copyright

Copyright reserved © 2020

摘要

地表比辐射率是估算地表温度以及地表长波辐射的一个重要参数,为了解决遥感影像反演地表比辐射率在裸地的精度不足问题,本文在新疆沙漠地区利用2类数据:① 傅里叶变换热红外光谱仪(FTIR)数据,在2013年、2014年秋天沿2条穿越塔克拉玛干沙漠的沙漠公路测量得到25个点的地表比辐射率数据;② 与FTIR数据同时期的MODIS温度/比辐射率数据MOD11A1、MOD11B1和反射率数据MOD09GA以及反照率数据MCD3A3,利用这2类数据为数据源,估算新疆沙漠地表比辐射率。首先,重新估算了基于MODIS宽波段比辐射率(BroadBand Emissivity, BBE)方程的系数和基于GLASS(Global L And Surface Satellite)BBE方程的系数,由此获得了GLASS BBE和MODIS BBE的修正方程。其次,将修正前后的GLASS BBE与FTIR和MODIS BBE作对比,发现其精度显著提高:① 与FTIR数据对比,修正前后的GLASS BBE方程的决定系数R2值从0.42增加到0.95,均方根误差(RMSE)和偏差(Bias)分别减少了1和3个数量级;② 与MODIS BBE方程数据对比,修正前后的GLASS BBE的R2值从0.69增加到0.91,RMSEBias分别减少了1和2个数量级。因此,修正后的基于GLASS和MODIS的BBE方程,极大地提高了遥感影像对裸地尤其是沙漠地区地表比辐射率的反演精度。使用修正后的GLASS BBE方程反演出新疆3个沙漠地区的BBE分布特征。结果表明,塔克拉玛干沙漠由于土地类型较为单一,其BBE值主要为0.88~0.92,而古尔班通古特沙漠以及库姆塔格沙漠受到地形、植被等的影响,BBE值稍微偏高,分别为0.89~0.95和0.89~0.94,沙漠周边稀疏植被区及其边缘地区的值范围为0.95~1.00。本文基于GLASS和MODIS的适用于新疆沙漠的BBE方程,为陆面过程的研究与模拟提供了支持。

本文引用格式

阿依尼格尔·亚力坤 , 买买提艾力·买买提依明 , 刘素红 , 杨帆 , 何清 , 刘永强 . 新疆沙漠地区地表宽波段比辐射率遥感估算[J]. 地球信息科学学报, 2020 , 22(8) : 1743 -1751 . DOI: 10.12082/dqxxkx.2020.190379

Abstract

Surface Broadband Emissivity (BBE) is a key variable for estimating surface longwave net radiation, which is a component of the surface radiation budget and an important parameter in climate, weather, and hydrological models. A constant land surface longwave emissivity, or simple parameterization, has been adopted by many land-surface models because of the lack of reliable observations. Moreover, of all the various Earth surface types, bare soil has the largest variation in BBE. Thus, accurate estimation of land surface emissivity for bare soil is important for retrieval of surface temperature and calculation of longwave surface energy budget. In order to retrieval accurate emissivity from remote sensing in the bare-soil area, two types of data were obtained indeserts of Xinjiang: (1) Land surface emissivity at 25 sites along two highways across the Taklimakan Desert. The spectral of broadband emissivity were measured in the fall of 2013 and 2014 by portable FTIR ( Fourier Transform thermal InfraRed spectroscopy), (2) MODIS (Moderate Resolution Imaging Spectroradiometer) temperature and emissivity data ( MOD11A1 and MOD11B1 ), reflectance data ( MOD09GA ), and albedo data (MCD43A3) of the same period.The two types of data were combined to estimate the surface emissivity of the Xinjiang deserts. Firstly, we re-estimated the coefficients of the MODIS BBE equation and the GLASS (Global Land Surface Satellite) BBE equation. The MODIS and GLASS BBE equations were both optimized with the new coefficients. Secondly, we compared with the optimized GLASS BBE equation with the FTIR and MODIS BBE equations. By comparison, the accuracy of optimized GLASS BBE equation was significantly improved, which was proved by: (1) According to the error analysis against FTIR data, the value of R2 (coefficient of determination) increased from 0.42 to 0.95, the RMSE ( Root Mean Square Error ) and the Bias reduced by 1 and 3 orders of magnitude, respectively; (2) Compared to MODIS BBE data, the value of R2 increased from 0.69 to 0.91, the RMSE and Bias reduced by 1 and 2 orders of magnitude, respectively. In our study, the BBE in Xinjiang desertswasfinally calculated using the optimized GLASS BBE equation. Our results show that the BBE in Taklimakan Desert ranged from 0.88 to 0.91, which was due to the single type of terrain, soil, and particularly aridity.While the Gurbantunggut Desert and the Kumtag Desert were more affected by topography and vegetation, their BBE values (0.89~0.95 and 0.89~0.94, respectively) were slightly higher than that of the Taklimakan Desert. The sparse vegetated area around the deserts and the edge area had the highest BBE(0.95~1.00).The BBE equationsdeveloped for Xinjiang desertsbased on GLASS and MODIS provides useful reference forfuture land-surface process models.

1 引言

地表宽波段比辐射率是估算地表净辐射的一个关键参数,也是计算地表辐射收支和天气及水文模型的关键参数[1,2,3,4,5,6]。获取BBE光谱数据是准确计算比辐射率最有效和准确的方法。地表BBE光谱能够通过傅里叶热红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR)观测得到[7,8,9,10,11]。刘永强等[12]和Liu等[13]利用FTIR对塔克拉玛干沙漠腹地的比辐射率进行了测量和研究,虽然利用FTIR观测只能获取样点数据而不能获取区域值,但是能与热红外遥感获取窄波段比辐射率的缺陷互补[14]
在现有的陆面过程模型和大气模型中,由于缺乏可靠的实地观测资料,比辐射率通常采用定值或简单的参数化方案[3,15]。例如,美国大气研究中心土地模型第二版根据叶面积指数计算冠层的比辐射率,并将土壤和雪地的比辐射率分别设为0.96和0.97[16]。Zhou等[15]在北非和阿拉伯半岛,通过模拟能量研究比辐射率的敏感性,发现土壤比辐射率下降0.1,地面和空气温度分别平均上升1.1 ℃和0.8 ℃,净长波辐射和向上长波辐射分别而下降约6.6 W/m-2和8.1 W/m-2。Jin和Liang[3]也展示了BBE在改善大气模型中的贡献。因此,研究人员在估算地表BBE时,一般会选择遥感数据或者是光谱库来建立BBE估算模型。Ogawa等[17]利用 MODIS(Moderate Resolution Imaging Spectroradiometer)和ASTER(Advanced Spaceborne Thermal Emission and Reflection Radiometer)的多组窄波段比辐射率的线性组合建立了BBE模型,将最佳宽波段的窗口确定为8~13.5 μm,估算出了撒哈拉沙漠地区的地表BBE,并做了验证。Wang等[18]利用ASTER的5个热红外波段的线性组合得到了8~13.5 μm的BBE估算模型,但是未验证其准确性。Wang等[19]和Tang等[20]分别利用MODIS光谱库MODIS UCSB emissivity library和ASTER光谱库JHU&JPL spectral library数据的线性组合建立了对应的BBE估算模型,在验证植被、水、土壤和冰雪的估算精度时,继续使用了光谱库数据。Ogawa等[21]在利用MODIS窄波段线性组合计算宽波段地表比辐射率时还加入了第7波段的数据。
地面观测数据的缺乏使这些模型及估算方程在局部区域的适用性受到了一定程度的限制。鉴于此,本文对GLASS BBE产品,使用FTIR实测数据进行质量评估和准确性验证,重新估算GLASS BBE方程的系数,获得GLASS BBE修正方程。通过FTIR数据与MODIS BBE和GLASS BBE之间的相互比较和分析,评价GLASS BBE产品在空间尺度上的一致性和精度,并分析GLASS BBE在新疆沙漠的分布特征。

2 研究区概况与数据来源

2.1 研究区概况

新疆位于中国西北部,是典型的干旱和半干旱地区[22],新疆地区的沙漠总面积达到42.9×104 km2,占新疆总面积的26.12%[23]。主要有塔克拉玛干沙漠、古尔班通古特沙漠和库姆塔格沙漠。塔克拉玛干沙漠位于塔里木盆地中部,面积33.76×104 km2 [24,25,26,27],沙漠土壤类型较为单一,主要以细沙为主,还含有少量的白云母和长石[12]。沙漠腹地地表土壤为流沙,其中细砂占总量的98%以上,粉砂占1.5%,黏土占0.5%。沙漠边缘靠近绿洲的地区为黏土,细沙占总量的73%,粉砂占9%,黏土占18%。沙漠最高温度为45.6 ℃,最低温度为-32.7 ℃,年平均风速为2.5 m·s-1[28]。古尔班通古特沙漠位于北疆准噶尔盆地中央,面积为4.88×104 km2,是全国第二大沙漠,年降水量100~150 mm[29],年均温6~10 ℃,最热月均温为24~27 ℃,极端最高40 ℃以上[30]。库姆塔格沙漠处于塔里木盆地以东,总面积约为2.29×104 km2,年降水量不足10 mm[31,32]

2.2 数据来源

2.2.1 FTIR数据
塔克拉玛干沙漠地区地表宽波段比辐射率采用便携式傅里叶变换热红外光谱仪(FTIR)测量获得。沿轮台至民风以及阿拉尔至和田的2条沙漠公路,根据地表类型确定合适的距离选点,观测样点由南至北贯穿整个沙漠地区,在靠近绿洲的沙漠边缘过渡区,增加样点的数量[33]。共采集了25个样点(表1)的BBE数据,2条沙漠公路的样点采集时间分别为2013年10月16—19日和2014年9月25—27日[12,13]
表1 观测样点位置及时间

Tab. 1 In-situ sites and time

观测点 经纬度/(N,E) 高程/m 观测时间
1 37°54'13",83°01'44" 1252 2013-10-16 12:30-13:06
2 37°23'17",82°50'25" 1334 2013-10-16 16:20-16:50
3 38°11'21",83°08'20" 1182 2013-10-16 18:00-18:20
4 38°38'52",83°20'43" 1115 2013-10-16 19:15-19:30
5 38°58'51",83°38'27" 1088 2013-10-17 11:37-12:16
6 39°23'16",83°51'24" 1028 2013-10-17 17:40-18:10
7 39°53'45",84°13'25" 967 2013-10-18 11:50-12:10
8 40°22'26",84°19'32" 920 2013-10-18 13:15-13:30
9 40°48'04",84°18'02" 917 2013-10-18 15:15-15:40
10 40°48'04",84°18'02" 917 2013-10-18 15:45-16:00
11 40°49'13",84°17'31" 917 2013-10-18 16:35-16:50
12 40°48'37",83°54'44" 923 2013-10-18 17:30-17:50
13 41°09'24",84°14'52" 912 2013-10-18 19:00-19:20
14 41°49'23",84°16'03" 970 2013-10-19 11:10-11:20
15 39°12'10",83°42'44" 1119 2014-09-25 16:14-16:50
16 39°36'07",84°00'32" 1056 2014-09-25 17:40-18:07
17 38°26'08",83°13'22" 1152 2014-09-26 12:35-13:02
18 37°43'06",82°59'00" 1304 2014-09-26 14:20-14:50
19 37°13'21",82°47'27" 1349 2014-09-26 15:51-16:15
20 37°42'57",80°28'08" 1232 2014-09-27 12:30-12:52
21 38°08'03",80°38'20" 1192 2014-09-27 13:45-14:09
22 38°54'54",80°55'31" 1117 2014-09-27 15:35-16:03
23 39°24'46",80°57'47" 1071 2014-09-27 17:00-17:20
24 39°52'22",80°57'52" 1046 2014-09-27 18:19-18:40
25 40°18'54",81°05'29" 1006 2014-09-27 19:30-19:49
对获取的每个样点的地表比辐射率光谱曲线值,进行离散化计算,得到8~14 μm的宽波段地表比辐射率值。从25个样点中挑选6个典型沙土的光谱曲线(图1),可以看出,6条曲线的规律大致相同。均匀细沙、均匀粗沙、含黑色小石子细沙、表面粗沙多于细沙的地表光谱曲线走势基本一致,黏土和碱土的地表光谱曲线稍微偏高,是因为在该样点周围存在一些柽柳、胡杨等植被,并且为古河床下垫面,土壤湿度比起沙漠腹地偏高,所以导致这2个样点的光谱曲线呈现出偏高的趋势。
图1 塔克拉玛干沙漠及周边不同土壤类型的地表光谱曲线

Fig. 1 Spectral curve of different soil types in the Taklimakan desert and its surrounding

2.2.2 MODIS数据
MODIS数据提供了0.4~14 μm的36个离散波段图像,具有高光谱分辨率和时间分辨率,在大规模监测全球环境参数变化方面有明显的优势[34]。最适合获得表面比辐射率的热红外波段的大气窗口为8~14 μm,相对应的MODIS波段为第29—32波段。由于强烈的臭氧吸收,导致第30波段无法使用,因此选择第29、31和32波段。此外,近红外区域的第7波段由于能够反映出地表土壤的属性特征[35,36],并且它与所有MODIS反射通道中的宽波段比辐射率的相关性最高[28]。一般来说,富石英砂(SiO2)物质具有较高的反射率和较低的比辐射率[21]。由于塔克拉玛干沙漠富含石英砂,表面反射率高,因此本研究增加了第7波段[33,37]
本文采用了MODIS温度/比辐射率产品MOD-11A1中的第31、32波段(分辨率均为1000 m)、MOD11B1的第29波段(分辨率为6000 m)以及MOD09GA中的第7波段反射率数据(分辨率为500 m),影像数据覆盖整个研究区,时间与FTIR数据时间保持一致。MODIS数据可以从美国NASA(National Aeronautics and Space Administration)网站(http://modis.gsfc.nasa.gov)免费获取[28,33]
2.2.3 GLASS数据
GLASS的比辐射率产品是使用新开发的算法从AVHRR(Advanced Very High Resolution Radiometer)VNIR(Visible/Near InfraRed)数据和MODIS反照率得到BBE(覆盖波长范围从8~13.5 μm)[38,39]。GLASS比辐射率分为2部分:① 2000—2010年从MODIS反照率数据中反演得到全球8天1 km地表BBE;② 1981—1999年从AVHRR VNIR反射率数据中反演得到全球8d 5 km地表BBE。在使用MODIS反照率数据生成GLASS BBE的算法中,根据归一化植被指数(NDVI)的阈值将陆地表面分为 5种类型:水、雪或冰、裸土、植被区域和过渡区,并且对裸土和过渡带或过渡带和植被区域的重叠区域进行了相应处理。基于ASTER光谱库中的比辐射率光谱和MODIS UCSB比辐射率数据库计算的BBE组合,将水和雪或冰的BBE设置为0.985,并通过辐射传输模型模拟BBE[40]。裸土、植被区和过渡带的BBE被公式化为7个MODIS窄带黑天反照率的线性组合函数。当NDVI<0.1或NDVI>0.2时,利用公式计算裸土或植被区域的个体BBE值。在裸土和过渡带重叠区域(0.1< NDVI ≤0.156),BBE为裸土和过渡带的平均值。在重叠过渡区和植被区域(0.156< NDVI <0.2),其BBE通过过渡区和植被区域的平均值得到,并用美国和中国的野外测量数据进行验证,绝对差异为0.02[37,39,41]
基于GLASS BBE产品反演算法,本文采用MODIS反照率产品MCD43A3中的1~7波段(分辨率为1000 m)和MODIS植被指数产品MOD13(分辨率为1000 m),获取的产品时间及区域与2.2.2节MODIS数据保持一致。GLASS数据可以从国家地球系统科学数据共享服务平台(http://glass-product.bnu.edu.cn/)免费获取[39]

3 研究方法

3.1 基于FTIR测量地表BBE

刘永强等[12]和Liu等[13]使用FTIR测量地表比辐射率,并对其工作原理、获得比辐射率光谱和测量点的典型沙土光谱曲线进行了详细的介绍及描述。FTIR工作光谱范围为2~16 μm,光谱分辨率为2~24 cm-1,测量结果的标准差小于1%[10]。计算公式为:
ε λ = L λ - L D λ B λ ( T ) - L D λ
式中: ε λ 是在波长λ处的比辐射率的光谱; L λ ( c m 2 sr ) 是波长λ处的地表辐射亮度; B λ ( T ) ( c m 2 sr ) 是地表温度为TK)且波长为λ处的黑体辐射亮度,使用校准的漫反射金板测量下行辐射亮度 D λ ( T ) ( c m 2 sr ) [3,34]
在陆地表面模型和数值预测模型中,比辐射率一般使用BBE光谱的平均值。计算波长范围在 λ1~λ2之间的地表比辐射率计算公式为[42]
ε λ 1 - λ 2 = λ 2 λ 1 ε λ B λ T d λ λ 2 λ 1 B λ T d λ
使用FTIR观测地表比辐射率的光谱时,采用波长8~14 μm计算BBE[13]。由于式(2)是连续函数,为了便于计算,积分方程被离散化:
ε λ 1 - λ 2 = λ = λ 1 λ 2 ε λ B λ ( T ) Δ λ λ = λ 1 λ 2 B λ ( T ) Δ λ

3.2 基于MODIS估算地表BBE

MODIS地表比辐射率值的计算公式[43]
ε i = λ i 1 λ i 2 f i ( λ ) ε λ B λ ( T ) d λ λ i 1 λ i 2 f i ( λ ) B λ ( T ) d λ
式中: ε i 为MODIS热红外窄波段比辐射率; f i ( λ ) 为第i波段的光谱响应函数。利用式(2)和式(4),通过线性组合,得到MODIS BBE计算公式[19]
ε λ 1 - λ 2 = i = 1 n λ i λ ( i + 1 ) ε λ B λ ( T ) d λ λ 1 λ 2 B ( T ) d λ i = 1 n g i ε i
式中:gi为组合系数;加入MODIS第7波段后,估算宽波段地表比辐射率的公式[28]
ε 8 - 13.5 = a i ε i + b ρ 7 + c
式中: a i , b , c ( i = 29,31,32 ) 为方程的系数;εii=29, 31,32)为MODIS第29、31和32波段的比辐射率值; ρ 7 是MODIS第7波段的反射率值。

3.3 基于GLASS估算地表BBE

GALSS估算地表BBE时,将陆表划分为水体、冰/雪、裸土、植被覆盖和过渡区域,并且针对每一类型都给出相应的比辐射率估算方法。① 对水体、冰/雪像元,直接对其赋值为0.985;② 对于其他的地表类型,以ASTER比辐射率产品、MODIS反射率和反照率产品为数据源,建立了裸土、过渡区域、植被覆盖区域BBE与窄波段黑天空反照率的经验关系,BBE的波长范围为8~13.5 μm[41]。其算法为:
ε ̅ = e + i = 1 7 d i BS A i
式中: ε ̅ 为宽波段比辐射率;BSAi为窄波段黑天空反照率;di为系数;e为常数。
裸土区域的像元比辐射率来自于裸土算法(NDVI ≤ 0.1);植被覆盖区域(NDVI ≥ 0.2)的比辐射率分2种情况,完全植被覆盖区(NDVI > 0.461)和半植被覆盖区(0.2≤ NDVI< 0.461),采用植被覆盖算法对该区域比辐射率进行计算;过渡区域将被划分为裸土过渡区域和植被过渡区域2部分,裸土过渡区域(0.1≤ NDVI ≤0.156)的像元比辐射率通过计算过渡区和裸土区比辐射率的均值获得,而对于植被过渡区(0.156 ≤ NDVI≤ 0.2)来说,像元比辐射率通过计算过渡区和植被区的均值获得。
由于新疆沙漠地区的地表比辐射率由沙漠(裸地)比辐射率和周围绿洲与稀疏植被区比辐射率组成[41],所以,新疆沙漠地区的比辐射率算法可以表示为:
ε ̅ = A 0 NDVI + i = 1 7 f i BS A i + h
式中:A0和h为常数;BSAi为窄波段黑天空反照率; fi为反照率的系数;NDVI为归一化植被指数。

4 结果与分析

4.1 估算方程

李火青等[28]提出,利用FTIR数据对MODIS比辐射率产品数据进行精度验证的结果很好。利用10个FTIR值拟合出式(6)的系数,得到最优MODIS BBE方程(式(9))。
y = 0.0675 ε 29 + 0.1326 ε 31 + 0.7842 ε 32 - 0.1206 ρ 7 + 0.0071
利用剩余的FTIR值对式(9)进行验证(图2),决定系数R2达到了0.95,均方根误差RMSE为0.0037,偏差Bias为-0.00056。可见修正系数后的MODIS BBE估算方程精度很高,因此,也可以用式(9)验证GLASS BBE的估算精度。
图2 FTIR实测值与MODIS BBE估算值比较

Fig. 2 Comparison of the emissivities between the observed by FTIR and estimated by MODIS BBE

4.2 对比验证

首先,从GLASS原始产品中提取与25个FTIR观测样点相同地区的BBE数据,分别与FTIR实测值和MODIS BBE估算值进行对比。由图3可看出,原始GLASS BBE数据与FTIR实测值和MODIS BBE估算值的相关性较低,而且GLASS BBE数据明显偏高,与FTIR实测值的R2只能达到0.42,RMSEBias分别为0.0289和-0.02769;与MODIS BBE估算值的相关性相对较好,但是RMSEBias并没有减少。由此可见,GLASS BBE产品数据在沙漠中的精度有待提高。因此,对GLASS BBE原始公式的系数进行重新估算,随机抽取10个FTIR观测值,利用多元回归的方法,拟合出式(7)的系数,得到修正后的GLASS BBE方程(式(10))。
$\varepsilon_{8-13.5}=0.8694\alpha_{1}+3.2855\alpha_{2}+0.0979\alpha_{3}-0.4263\alpha_{4}- \\ 2.377\alpha_{5}-0.0605\alpha_{6}+0.5629\alpha_{7}+0.8358$
图3 FTIR实测值、MODIS BBE估算值与GLASS BBE修正前的估算值对比

Fig. 3 Comparison of the emissivities observed by FTIR and estimated by MODIS BBEwith original GLASS BBE

利用剩余的15个FTIR实测值和MODIS BBE估算值分别与修正后的GLASS BBE方程估算值进行对比(图4),发现修正后的GLASS BBE方程估算值与修正前相比,与FTIR实测值的R2从0.42提高到0.95,RMSEBias分别降低了1和3个数量级,与MODIS BBE估算值的R2从0.69提高到0.91,RMSEBias分别降低了1和2个数量级。
图4 FTIR实测值、MODIS BBE估算值与GLASS BBE修正后的估算值对比

Fig. 4 Comparison of the emissivities observed by FTIR and estimated by MIODIS BBEwith revised GLASS BBE

4.3 误差分析

众所周知,沙漠地区的反照率高,比辐射率低,而植被地区的反照率低,比辐射率高。由于式(10)仅利用了MODIS的反照率产品MCD43A3,由此获得沙漠周围绿洲带的比辐射率值不够准确。所以,结合GLASS BBE算法和MODIS NDVI产品,重新修正了整个沙漠区域的算法(式(11))。
$\varepsilon_{8-13.5}=0.036 \cdot NDVI+0.235\alpha_{1}-0.724\alpha_{2}-0.325\alpha_{1}+ \\ 0.231\alpha_{4}+0.313\alpha_{5}+0.757\alpha_{6}-0.7126\alpha_{7}+0.964$
以塔克拉玛干沙漠区域为例,从2013年、2014年9月、10月选出10个晴天的MODIS影像数据,利用式(9)和式(11),分别对修正前后的GLASS BBE方程与MODIS BBE做波段运算,计算其RMSEBias。由图5可看出,修正前的RMSE值,在沙漠中心区域为0.0179~0.0229,在沙漠边缘的绿洲区为0.0006~0.0400,而周围的植被区为0.0499~0.1000;修正前的Bias值,在对应区域分别为-0.01899~0.021 99,-0.015 99~0.002 00和0.030 00~0.100 00;修正后的RMSE值,在沙漠中心为0.0009左右,在周围绿洲区与植被区分别为0.0009~0.0200和0.0300~0.1000,修正后的Bias值,在对应区域分别为0.000 99左右、-0.001 00~0.001 00和0.002 00~0.005 00。明显看出,RMSE降低了1个数量级,Bias降低了2~3个数量级,与图4结论一致。
图5 GLASS BBE修正前后与MODIS BBE 的RMSEBias对比

Fig.5 The comparisons of RMSE and Bias between the original and revised GLASS BBE with MODIS BBE

4.4 新疆沙漠地表比辐射率分布特征

为了得到新疆沙漠地区地表比辐射率分布特征,选取2014年9月27日的MODIS数据,并利用其黑空反照率的1~7波段,根据式(11)估算新疆沙漠地区的地表比辐射率(图6)。从图中可见,沙漠地区的比辐射率明显低于周围植被区域(即绿洲和森林覆盖地区),其值范围为0.88~0.95,变化幅度相对较小。其中,塔克拉玛干沙漠腹地区域的值介于0.88和0.92之间,分布最广,但变化不大,沙漠边缘稀疏植被区的值在0.91~0.95之间,靠近沙漠边缘的绿洲区(如阿拉尔、且末、轮台、喀什绿洲)的值在0.95~0.98之间。古尔班通古特沙漠由于受到植被覆盖度以及地表水分等的影响,所以其值稍微偏高,范围为0.91~0.95。库姆塔格沙漠的值范围为0.90~0.92。可见地表比辐射率受到地形、植被覆盖程度以及地表水分的影响。
图6 新疆沙漠宽波段比辐射率分布特征

Fig. 6 Characteristics of broadband emissivity distribution in Xinjiang desert

5 结论与讨论

本文使用傅里叶热红外光谱仪获得的实测数据以及MODIS比辐射率、反射率和反照率数据建立了MODIS BBE方程以及GLASS BBE修正方程。修正后的GLASS BBE方程更适合塔克拉玛干沙漠地区,结论如下:
(1)利用GLASS BBE产品分别与FTIR实测值和MODIS BBE估算值进行对比分析,GLASS BBE估算值普遍偏高,与FTIR实测值、MODIS BEE估算值偏差较大,R2分别为0.42和0.69,从RMSEBias中也可以看出结果与实测值偏差较大;
(2)利用FTIR实测值对GLASS BBE原方程进行系数修正。修正后的GLASS BBE估算值与FTIR实测值以及MODIS BBE估算值再进行对比,其相关性显著提高,R2分别提高到了0.95和0.91,RMSE降低了1个数量级,Bias降低了2~3个数量级;
(3)利用MODIS影像和修正后的GLASS BBE方程,得出新疆沙漠地区地表比辐射率变化范围为0.88~0.95,塔克拉玛干沙漠区域比辐射率变化幅度较小,而古尔班通古特以及库姆塔格沙漠由于受到地形地貌、植被覆盖以及土壤湿度等因素的影响,比辐射率值稍微偏高,但都呈现出沙漠腹地数值低,周围绿洲地区数据较高的特点。
本文提出的估算方法得到了合理的宽波段地表比辐射率,但只对新疆沙漠地区进行了验证与分析,在其他沙漠地区还需要进行更广泛的验证,还有在其他植被覆盖区和湿润地区的适用性还有待进一步研究。
[1]
Cheng J, Liang S, Wang J, et al. A stepwise refining algorithm of temperature and emissivity separation for hyperspectral thermal infrareddata[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010,48(3):1588-1597.

DOI

[2]
Jacob F, Petitcolin F, Schmugge T, et al. Comparison of land surface emissivity and radiometric temperature derived from MODIS and ASTER sensors[J]. Remote Sensing of Environment, 2004,90(2):137-152.

DOI

[3]
Jin M L, Liang S L. An improved land surface emissivity parameter for land surface models using global remote sensing observations[J]. Journal of Climate, 2006,19(12):2867-2881.

DOI

[4]
Liang S L. Quantitative remote sensing of land surfaces[M]// Quantitative remote sensing of land surfaces. Wiley-Interscience, 2004: 413-415.

[5]
Liang S, Kustas W, Schaepman-Strub G, et al. Impacts of climate change and land use changes on land surface radiation and energy budgets[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2010,3(3):219-224.

[6]
Péquignot E, Chédin A, Scott N A. Infrared continental surface emissivity spectra retrieved from AIRS hyperspectral sensor[J]. Journal of Applied Meteorology & Climatology, 2008,47(6):1619-1633.

[7]
Hanan N P, Berry J A, Verma S B, et al. Testing a model of CO2, water and energy exchange in Great Plains tallgrass prairie and wheat ecosystems[J]. Agricultural & Forest Meteorology, 2005,131(3-4):162-179.

[8]
Hook S J, Kahle A B. The micro fourier transform interferometer (micro FTIR): A new field spectrometer for acquisition of infrared data of natural surfaces[J]. Remote Sensing of Environment, 1996,56(3):172-181.

DOI

[9]
Korb A R, Dybwad P, Wadsworth W, et al. Portable fourier transform infrared spectroradiometer for field measurements of radiance and emissivity[J]. Applied Optics, 1996,35(10):1679-92.

DOI PMID

[10]
Korb A R, Salisbury J W, D'Aria D M. Thermal-infrared remote sensing and Kirchhoff's law: 2. Field measurements[J]. Journal of Geophysical Research Solid Earth, 1999,104(B7):15339-15350.

[11]
Hori M, Aoki T, Tanikawa T, et al. In-situ measured spectral directional emissivity of snow and ice in the 8-14 μm atmospheric window[J]. Remote Sensing of Environment, 2006,99(4):486-502.

DOI

[12]
刘永强, 买买提艾力·买买提依明, 霍文, 等. 塔克拉玛干沙漠地表发射率及分布变化特征[J]. 沙漠与绿洲气象, 2014,8(3):1-7.

[ Liu Y Q, Ali Mamtimin, Huo W, et al. Characteristics of surface emissivity and distribution in the Taklimakan desert[J]. Desert and oasis weather, 2014,8(3):1-7. ]

[13]
Liu Y Q, Mamtimin A, Huo W, et al. Estimation of the land surface emissivity in the hinterland of Taklimakan Desert[J]. Journal of Mountain Science, 2014,11(6):1543-1551.

DOI

[14]
Sobrino J A, Raissouni N, Li Z L. A Comparative study of land surface emissivity retrieval from NOAA data[J]. Remote Sensing of Environment, 2001,75(2):256-266.

DOI

[15]
Zhou L M, Dickinson R E, et al. A sensitivity study of climate and energy balance simulations with use of satellite‐derived emissivity data over Northern Africa and the Arabian Peninsula[J]. Journal of Geophysical Research Atmospheres, 2003,108(D24):131-8.

[16]
Bonan G B. The land surface climatology of the NCAR land surface model coupled to the NCAR community climate model[J]. Journal of Climate, 2002,15(15):3123-3149.

DOI

[17]
Ogawa K, Schmugge T, Rokugawa S. Estimating broadband emissivity of arid regions and its seasonal variations using thermal infrared remote sensing[J]. IEEE Transactions on Geoscience & Remote Sensing, 2008,46(2):334-343.

[18]
Wang H S, Xiao Q, Li H, et al. Investigating the impact of soil moisture on thermal infrared emissivity using ASTER data[J]. IEEE Geoscience & Remote Sensing Letters, 2015,12(2):294-298.

[19]
Wang K C, Wan Z M, Wang P C, et al. Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/ /emissivity products[J]. Journal of Geophysical Research, 2005,110:D11109.

DOI

[20]
Tang B H, Wu H, Li C R, et al. Estimation of broadband surface emissivity from narrowband emissivities[J]. Optics Express, 2011,19(1):185-192.

DOI PMID

[21]
Ogawa K, Schmugge T. Mapping surface broadband emissivity of the sahara desert using ASTER and MODIS data[J]. Earth Interactions, 2004,8(7):145-147.

[22]
盛光伟, 肖鹏峰, 张学良, 等. 新疆天山及北疆地区积雪反照率差异[J]. 干旱区地理, 2019,42(4):774-781.

[ Sheng G W, Xiao P F, Zhang X L, et al. Difference of snow albedo between Tianshan Mountain and North Xinjiang[J]. Arid Area Geography, 2019,42(4):774-781. ]

[23]
张志伟, 杨发相, 吴吉龙. 新疆沙漠空间分布格局与类型结构[J]. 干旱区研究, 2014,31(4):763-770.

[ Zhang Z W, Yang F X, Wu J L. Spatial distribution pattern and type structure of Xinjiang desert[J]. Study on Arid areas, 2014,31(4):763-770. ]

[24]
彭艳梅, 王舒, 肖高翔, 等. 塔克拉玛干沙漠腹地塔中地区大气气溶胶散射系数影响因子[J]. 中国沙漠, 2018,38(2):384-392.

[ Peng Y M, Wang S, Xiao G X, et al. Impact factors of atmospheric aerosol scattering coefficient in the Tazhong area of the Taklimakan desert[J]. Journal of Desert Research, 2018,38(2):384-392. ]

[25]
彭艳梅, 高磊, 王舒, 等. 塔克拉玛干沙漠腹地气溶胶不同波段散射系数比较[J]. 沙漠与绿洲气象, 2018,12(3):26-32.

[ Peng Y M, Gao L, Wang S, et al. Comparison of aerosol scattering coefficients of different wavebands in the hinterland of the Taklimakan desert[J]. Desert & Oasis Meteorology, 2018,12(3):26-32. ]

[26]
周成龙, 杨兴华, 钟昕洁, 等. 塔克拉玛干沙漠腹地沙尘天气特征[J]. 干旱区研究, 2017,34(2):324-329.

[ Zhou C L, Yang X H, Zhong X J, et al. Dust weather in hinterland of the Taklamakan desert[J]. Arid Zone Research, 2017,34(2):324-329. ]

[27]
金莉莉, 李振杰, 何清, 等. 塔克拉玛干沙漠腹地人工绿地中心区域与边缘地带小气候[J]. 中国沙漠, 2017,37(5):986-996.

[ Jin L L, Li Z J, He Q, et al. Microclimate over the center and edge areas of the artificial shelter forest land in Taklimakan desert[J]. Journal of Desert Research, 2017,37(5):986-996. ]

[28]
李火青, 吴新萍, 买买提艾力·买买提依明, 等. 利用FTIR和MODIS数据估算塔克拉玛干沙漠宽波段地表比辐射率[J]. 光谱学与光谱分析, 2016,36(8):2414-2419.

[ Li H Q, Wu X P, Ali, Mamtimin, et al. Estimating surface broadband emissivity of the Taklimakan desert with FTIR and MODIS Data[J]. Spectroscopy and Spectral Analysis, 2016,36(8):2414-2419. ]

[29]
蒋超亮, 吴玲, 刘丹, 等. 干旱荒漠区生态环境质量遥感动态监测——以古尔班通古特沙漠为例[J]. 应用生态学报, 2019,30(3):877-883.

[ Jiang C L, Wu L, Liu D, et al. Dynamic monitoring of ecological environment quality in arid desert area by remote sensing: A case study of Gurbantunggut desert[J]. Journal of Applied Ecology, 2019,30(3):877-833. ]

[30]
张立运, 陈昌笃. 论古尔班通古特沙漠植物多样性的一般特点[J]. 生态学报, 2001,22(11):1923-1932.

[ Zhang L Y, Chen C D. On the general characteristics of plant diversity in Gurbantunggut desert[J]. Journal of Ecology, 2001,22(11):1923-1932. ]

[31]
董治宝, 屈建军, 钱广强, 等. 库姆塔格沙漠风沙地貌区划[J]. 中国沙漠, 2011,31(4):805-814.

[ Dong Z B, Qu J J, Qian G Q, et al. Regionalization of wind-sand geomorphology in Kumtag desert[J]. Desert of China, 2011,-31-(4):805-814. ]

[32]
俄有浩, 苏志珠, 王继和, 等. 库姆塔格沙漠综合科学考察成果初报[J]. 中国沙漠, 2006,26(5):693-697.

[ E Y H, Su Z Z, Wang W H, et al. A preliminary report on the results of comprehensive scientific investigation in Kumtag desert[J]. Desert of China, 2006,26(5):693-697. ]

[33]
李火青, 吴新萍, 买买提艾力·买买提依明, 等. 基于FTIR和MODIS数据估算新疆沙漠宽波段地表比辐射率[J]. 中国沙漠, 2017,37(3):523-529.

[ Li H Q, Wu X P, Ali Mamtimin, et al. Estimating the surface broadband emissivity of deserts in Xinjiang base on MODIS and FTIR Data[J]. Journal of Desert Research, 2017,37(3):523-529. ]

[34]
Wan Z M. New refinements and validation of the MODIS land-surface temperature/emissivity products[J]. Remote Sensing of Environment, 2014,140(1):36-45.

DOI

[35]
Yao Y J, Qin Q M, Zhao S H, et al. Retrieval of soil moisture based on MODIS shortwave infrared spectral feature[J]. Journal of Infrared & Millimeter Waves, 2011,30(1):9-14.

[36]
Zhou L M, Dickinson R E, Ogawa K, et al. Relations between albedos and emissivities from MODIS and ASTER data over North African desert[J]. Geophysical Research Letters, 2003,30(20):2026.

[37]
Cheng J, Liang S L. Estimating global land surface broadband thermal-infrared emissivity using advanced very high-resolution radiometer optical data[J]. International Journal of Digital Earth, 2013,6(sup1):34-49.

DOI

[38]
Cheng J, Liang S. Estimating the broadband longwave emissivity of global bare soil from the MODIS shortwave albedo product[J]. Journal of Geophysical ResearchAtmospheres, 2014,119(2):614-634.

[39]
Ren H Z, Liang S L, Yan G J. Empirical algorithms to map global broadband emissivities over vegetated surfaces[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013,51(5):2619-2631.

[40]
Cheng J, Liang S L, Weng F Z, et al. Comparison of radiative transfer models for simulating snow surface thermal infrared emissivity[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2010,3(3):323-336.

[41]
梁顺林, 张晓通, 肖志强, 等. 全球陆表特征参量(GLASS)产品:算法、验证与分析[M]. 北京: 高等教育出版社, 2014.

[ Liang S L, Zhang X T, Xiao Z Q, et al. Global Land Surface Satellite characteristic parameters (GLASS) Products: Algorithm, verification and analysis[M]. Beijng: Higher Education Press, 2014. ]

[42]
Wilber A C, Kratz D P, Gupta S K. Surface emissivity maps for use in satellite retrievals of longwave radiation[M]. NASA Langley Technical Report Server, 1999.

[43]
Wan Z M, Dozier J. A generalized split-window algorithm for retrieving land-surface temperature from space[J]. IEEE Transactions on Geoscience & Remote Sensing, 1996,34(4):892-905.

文章导航

/