一种基于FY3D/MERSI2的AOD遥感反演方法
陈 辉(1986— ),男,湖北黄冈人,工程师,研究方向为大气环境遥感。E-mail:matheking@163.com |
收稿日期: 2019-05-05
要求修回日期: 2020-01-06
网络出版日期: 2020-11-25
基金资助
国家环境保护标准制修订项目(2017-27)
国家总理基金项目(DQGG0205)
版权
Retrieval of Aerosol Optical Depth Using FY3D MERSI2 Data
Received date: 2019-05-05
Request revised date: 2020-01-06
Online published: 2020-11-25
Supported by
National Environmental Protection Standard Preparation and Revision Project(2017-27)
Causes of Heavy Air Pollution and Tackling Key Problems(DQGG0205)
Copyright
针对目前国产卫星对气溶胶遥感监测应用较少的情况,本研究综合暗象元和SARA算法优势,基于FY-3D MERSI2数据构建了一套气溶胶光学厚度(Aerial Optical Depth, AOD)快速遥感反演方法。首先,引入了传统暗象元算法中的地表反射率经验关系,然后利用AERONET长时间序列的地基观测数据,构建了红波段和蓝波段气溶胶光学厚度、不对称因子和单次散射率之间的关系,最后利用MOD04和AERONET的AOD产品对研究反演结果进行了验证和评估分析。结果发现:① 本研究反演的AOD不仅保持了与MODIS的气溶胶产品空间分布的一致性,而且合理地呈现了AOD的高值分布,改进了MOD04气溶胶产品在云和亮目标方面反演缺失问题;② 利用AERONET地基观测结果对本研究获取的MERSI2的AOD反演结果进行了对比分析,发现二者具有较高的线性相关性,蓝波段AOD线性相关系数超过0.85;③ 利用MERSI2数据完整地捕捉到了2018年3月9—14日京津冀及周边区域的一次重污染过程中气溶胶时空分布变化情况,这也说明了FY3D卫星具备良好的气溶胶遥感监测能力,为我国灰霾监测和预警提供参考依据。本研究对大力发展国产卫星在大气环境遥感的应用有重要参考意义。
关键词: 高分辨率遥感FY3D/MERSI; 气溶胶光学厚度; 简化的气溶胶遥感反演算法; 暗象元; 遥感反演; AERONET; 地表反射率; 对比验证
陈辉 , 厉青 , 王中挺 , 马鹏飞 , 李营 , 赵爱梅 . 一种基于FY3D/MERSI2的AOD遥感反演方法[J]. 地球信息科学学报, 2020 , 22(9) : 1887 -1896 . DOI: 10.12082/dqxxkx.2020.190206
Until now, relatively few researches of aerosols retrieval have been conducted using domestic satellite remote sensing. To promote domestic satellite remote sensing applications, a set of rapid inversion technology of Aerosol Optical Depth (AOD) using remote sensing was developed in this study based on FY-3D/MERSI2 data, which combined the advantages of Dark Target (DT) and SARA algorithm. Firstly, the empirical relationship of surface reflectance in traditional Dark Target algorithm was introduced to get the red and blue band surface reflectance. Then, the relationships between aerosol optical thickness, asymmetry factor, and single scattering albedo in red and blue bands were established using long time-series ground observation data from AERONET. Finally, MOD04 and AERONET AOD products were used to validate and evaluate the inversion results. Results show that the AOD retrieved from MERSI2 in this study not only kept the spatial consistency with the MODIS aerosol product, but also presented a reasonable distribution of high AOD values, which improved the AOD inversion in cloud and bright target areas where values were missing in MOD04 aerosol product. Meanwhile, compared with ground-based observations, the proposed algorithm also demonstrated a higher accuracy with an average correlation coefficient greater than 0.85 at the 470nm band. These two methods showed a strong linear correlation at blue band. Finally, the spatial and temporal distribution of aerosols during a heavy pollution in Beijing, Tianjin, Hebei, and surrounding areas from March 9 to March 14 in 2018 was completely captured using MERSI2, which indicated that FY3D satellite was able to monitor aerosols and could provide a reference for haze monitoring and early warning in China. This study provides important reference significance for the development and application of domestic satellites in atmospheric remote sensing business.
表1 MERSI2气溶胶反演主要波段光谱参数Tab. 1 MERSI2 channels used in AOD retrieval |
波段序号 | 中心波长/nm | 光谱带宽/nm | 空间分辨率/m | 主要用途 |
---|---|---|---|---|
1 | 470 | 50 | 250 | 获取蓝波段大气辐射传输方程,云像元识别 |
3 | 650 | 50 | 250 | 获取红波段大气辐射传输方程 |
7 | 2130 | 50 | 1000 | 根据经验公式计算红、蓝波段地表反射率,水体和暗像元识别 |
25 | 12 000 | 1000 | 250 | 云像元识别 |
国家风云卫星遥感数据服务网为本研究提供了FY3D/MERSI2数据,AERONET和NASA提供了为本研究提供了CE318观测资料和MOD04数据下载服务,在此一并致谢。
[1] |
苏城林, 苏林, 陈良富, 等. NPP VIIRS数据反演气溶胶光学厚度[J]. 遥感学报, 2015,19(6):977-989.
[
|
[2] |
田信鹏, 孙林, 刘强, 等. 北京地区Landsat 8 OLI高空间分辨率气溶胶光学厚度反演[J]. 遥感学报, 2018,22(1):51-63.
[
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
陈辉, 厉青, 王中挺, 等. MERSI和MODIS卫星监测京津冀及周边地区PM2.5浓度[J]. 遥感学报, 2018,22(5):822-832.
[
|
[8] |
张婕. 卫星气溶胶产品评估与融合改进及其在区域PM2.5浓度估算中的应用[D]. 兰州:兰州大学, 2016.
[
|
[9] |
唐维尧, 鲍艳松, 张兴赢, 等. FY-3A/MERSI、MODIS C5.1和C6气溶胶光学厚度产品在中国区域与地面观测站点的对比分析[J]. 气象学报, 2018,76(3):449-460.
[
|
[10] |
杨何群, 尹球, 周红妹, 等. 利用MATLAB实现FY-3/MERSI地表温度反演及专题制图[J]. 国土资源遥感, 2012,24(4):62-70.
[
|
[11] |
|
[12] |
|
[13] |
朱爱军, 胡秀清, 林曼筠, 等. 风云三号D气象卫星全球数据获取方法及数据分发[J]. 海洋气象学报, 2018,38(3):1-10.
[
|
[14] |
金诚. FY-3D卫星光谱成像仪陆上云检测算法研究[D]. 南京:南京信息工程大学, 2018.
[
|
[15] |
张帅, 师春香, 梁晓, 等. 风云三号积雪覆盖产品评估[J]. 遥感技术与应用, 2018,33(1):35-46.
[
|
[16] |
汪洋, 陈良富, 李莘莘, 等. 基于VIIRS数据的中国东部气溶胶光学厚度反演算法改进[J]. 地球物理学报, 2019,62(1):49-62.
[
|
[17] |
刘方伟, 苏庆华, 孙林, 等. 基于Himwari-8卫星的沙尘监测[J]. 山东科技大学学报(自然科学版), 2018,37(3):11-19.
[
|
[18] |
高大伟, 马浩, 郁珍艳, 等. 基于连续MODIS真彩图的霾监测预警新方法——以浙江省一次严重霾污染过程为例[J]. 中国环境科学, 2015,35(10):2939-2949.
[
|
/
〈 |
|
〉 |