融合土地覆盖和土壤水分产品的近地表空气温度空间化方法
高亮(1994— ),男,甘肃定西人,硕士生,主要从事农业遥感和农业气象灾害方面的研究。E-mail:gaoliang@aircas.ac.cn |
收稿日期: 2020-02-17
要求修回日期: 2020-05-12
网络出版日期: 2020-12-25
基金资助
国家重点研发计划资助项目(2017YFD0300404-1)
国家重点研发计划资助项目(2017YFD0300402)
版权
A Near-surface Air Temperature Spatialization Method Integrating Landuse and Soil Moisture Products
Received date: 2020-02-17
Request revised date: 2020-05-12
Online published: 2020-12-25
Supported by
National Key Research and Development Program of China(2017YFD0300404-1)
National Key Research and Development Program of China(2017YFD0300402)
Copyright
空气温度是评价人居环境的重要指标,与人类的生产生活息息相关;其观测对于水文、环境、生态和气候变化等方面的研究具有重要意义。传统的大范围空气温度观测数据一般通过气象站点获取,但由于气象观测站点空间分布离散稀疏的特点,所获取的数据不能精确描述空间连续的空气温度变化情况。因此,实现基于遥感数据的近地表空气温度精准估算具有重要的现实意义。本研究基于精细的地表覆盖类型、空间连续的土壤水分、地表温度(LST)数据,并结合其他辅助数据,构建了近地表空气温度空间化模型,并对近地表空气温度影响因子进行评估,发现地表覆盖类型对近地表空气温度的影响最大,土壤水分为最活跃的影响因素,经验证,模型精度较高,R2接近0.85,RMSE为0.5℃。本研究获取的精确空间连续的近地表空气温度信息,能够充分表达其空间异质性,为农业气象灾害灾变过程监测、农作物生长过程模拟、区域气候变化分析等研究提供良好的近地表空气温度数据支撑。
高亮 , 杜鑫 , 李强子 , 王红岩 , 张源 , 王思远 . 融合土地覆盖和土壤水分产品的近地表空气温度空间化方法[J]. 地球信息科学学报, 2020 , 22(10) : 2023 -2037 . DOI: 10.12082/dqxxkx.2020.200078
Air temperature is an important attribute for evaluating the living environment, and its studies and observations are closely related to human production and life. Air temperature observation data is of great significance for the study of hydrology, environment, ecology, and climate change. Traditional description of large-scale air temperature is generally obtained through meteorological stations. As affected by land surface condition and atmospheric state, the air temperature is spatially heterogeneous. However, due to the sparse spatial distribution of meteorological station sites, the data obtained from these meteorological stations cannot accurately describe the continuous spatial variation of air temperature across large areas. Hence, accurate inversion of near-surface air temperature based on remote sensing data is regarded as an effective and reasonably practicable solution. There are already some studies about obtaining spatially continuous near-surface air temperature using land surface temperature and other remote sensing data. In this study, we have used the remote sensing data, specifically the precise surface coverage type and spatially continuous soil moisture data, as the new input to improve the accuracy of temperature inversion. On this basis, we built a near-surface air temperature spatialization model using Land Surface Temperature (LST), land cover, soil moisture, land surface temperature, NDVI, DEM, aspect, and slope as the influencing factors. In order to fit the complex relationship between air temperature and its influencing factors, we chose four widely used machine learning algorithms and compared their accuracy to select the most reasonable model. At the same time, we also validated the results and evaluated the contribution of the influencing factors. Based on the results of the designed experiments, we found that precise surface cover type and spatially continuous soil moisture data played the most important role in near-surface air temperature spatialization model. The surface cover type has the greatest influence on the near-surface air temperature, and soil moisture is the most active influencing factor. The model validation results showed that the spatialization model has a relatively high accuracy, with an R2value close to 0.85, and a RMSE of 0.5℃. Comparing with traditional methods, the results of near-surface air temperature spatialization model in our study could express more refined spatial distribution pattern. The high precision near-surface air temperature inversion model proposed by our research is expected to provide effective data support to the study on the dynamic monitoring of agricultural meteorological disasters, simulation of crop growth processes, and analysis of regional climate change.
[1] |
|
[2] |
|
[3] |
崔晓临, 程贇, 张露, 等. 基于DEM修正的MODIS地表温度产品空间插值[J]. 地球信息科学学报, 2018,20(12):1768-1776.
[
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
郑文武, 曾永年. 地表温度的多源遥感数据反演算法对比分析[J]. 地球信息科学学报, 2011,13(6):840-847.
[
|
[10] |
陈冰倩, 张友水, 程璟媛, 等. 福州市地表温度热点及时空变化分析[J]. 地球信息科学学报, 2019,21(5):710-719.
[
|
[11] |
李娅丽, 汪小钦, 陈芸芝, 等. 福建省地表温度与植被覆盖度的相关性分析[J]. 地球信息科学学报, 2019,21(3):445-454.
[
|
[12] |
李召良, 段四波, 唐伯惠, 等. 热红外地表温度遥感反演方法研究进展[J]. 遥感学报, 2016,20(5):899-920.
[
|
[13] |
李召良, 唐伯惠, 唐荣林, 等. 地表温度热红外遥感反演理论与方法[J]. 科学观察, 2017,12(6):57-59.
[
|
[14] |
|
[15] |
白琳, 徐永明, 何苗, 等. 基于随机森林算法的近地表气温遥感反演研究[J]. 地球信息科学学报, 2017,19(3):390-397.
[
|
[16] |
|
[17] |
|
[18] |
徐伟燕, 孙睿, 金志凤, 等. 基于MODIS数据的近地表气温估算[J]. 气象与环境科学, 2015,38(1):1-6.
[
|
[19] |
曲培青, 施润和, 刘朝顺, 等. 基于MODIS地表参数产品和地理数据的近地层气温估算方法评价——以安徽省为例[J]. 国土资源遥感, 2011,91(4):78-82.
[
|
[20] |
帅晨, 沙晋明, 林金煌, 等. 不同下垫面遥感指数与地温关系的空间差异性研究[J]. 地球信息科学学报, 2018,20(11):1657-1666.
[
|
[21] |
李羽滢. 基于夏季微气候优化的成都市绿道景观设计研究[D]. 成都:西南交通大学, 2019.
[
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
胡媛媛, 仲雷, 马耀明, 等. 青藏高原典型下垫面地表能量通量的模型估算与验证[J]. 高原气象, 2018,37(6):1499-1510.
[
|
[30] |
张舒婷, 段四波, 幸泽峰, 等. 地表组分温度遥感反演算法研究进展[J]. 中国农业信息, 2019,31(1):11-23.
[
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
王倩倩, 覃志豪, 王斐. 基于多源遥感数据反演地表温度的单窗算法[J]. 地理与地理信息科学, 2012,8(3):24-26, 62, 113.
[
|
[37] |
|
[38] |
王奕森, 夏树涛. 集成学习之随机森林算法综述[J]. 信息通信技术, 2018,12(1):49-55.
[
|
[39] |
杨浩浩. 几种机器学习算法及其集成模型在回归问题中的应用与比较[D]. 兰州:兰州大学, 2018.
[
|
[40] |
|
[41] |
|
[42] |
郭云开, 刘雨玲, 张晓炯, 等. 利用辐射传输模型和随机森林回归反演LAI[J]. 测绘工程, 2019,28(6):17-21,29.
[
|
[43] |
|
[44] |
|
[45] |
陈天昕. 基于AdaBoost与SVM集成算法的高炉炉温状态解析[D]. 南昌:江西财经大学, 2019.
[
|
[46] |
张曼, 刘旭华, 何雄奎, 等. 岭回归在近红外光谱定量分析及最优波长选择中的应用研究[J]. 光谱学与光谱分析, 2010,30(5):1214-1217.
[
|
[47] |
|
[48] |
李军龙, 张剑, 张丛, 等. 气象要素空间插值方法的比较分析[J]. 草业科学, 2006,23(8):6-11.
[
|
[49] |
马秀霞, 黄领梅, 沈冰. 陕西省月平均气温空间插值方法研究[J]. 水资源与水工程学报, 2017,28(5):100-105.
[
|
[50] |
杨永川, 杨轲, 王志浩, 等. 空间插值法在热环境流动观测中的应用[J]. 中南大学学报(自然科学版), 2012,43(9):3741-3748.
[
|
[51] |
|
[52] |
|
[53] |
|
/
〈 | 〉 |