2019年北京市PM2.5人群暴露剂量特征分析
林金煌(1993— ),男,福建漳州人,博士生,主要从事地理信息系统应用与环境健康研究。 E-mail: linjinhuang93@163.com |
收稿日期: 2019-10-24
要求修回日期: 2020-10-16
网络出版日期: 2021-02-25
基金资助
国家重点研发计划项目(2017YFB0503500)
国家自然科学基金创新群体项目(41421001)
福建省科技厅公益类科研院所专项(2017R1034-1)
版权
Analysis of PM2.5 Population Exposure Doses Characteristics in Beijing in 2019
Received date: 2019-10-24
Request revised date: 2020-10-16
Online published: 2021-02-25
Supported by
National Key Research and Development Program of China(2017YFB0503500)
Science Fund for Creative Research Groups of the National Natural Science Foundation of China(41421001)
Special Projects for Public Welfare Research Institutes of Fujian Science and Technology Departmenta(2017R1034-1)
Copyright
近年来,PM2.5已成为雾霾爆发的主要污染物之一,人口长期暴露在高浓度的PM2.5中可能会大大的提高居民患病的几率,危害居民身心健康。本研究以空气污染严重且人口高度集中的北京市作为研究区,以2019年北京市的PM2.5浓度监测数据、人口空间分布栅格数据及不同人群的长期呼吸量等为数据基础,构建了“污染物浓度—暴露人口—呼吸量”的PM2.5人口暴露剂量评估模型,进而对北京市2019年的PM2.5人口暴露强度空间分异特征及不同人群的暴露剂量差异进行分析。结果表明:① 2019年北京市的PM2.5浓度在冬季时最高,日均浓度达48.89 μg/m3,并均呈现出北低南高的整体态势;② PM2.5人口暴露量存在显著的空间分异特征,不同人群的PM2.5暴露量均呈现出由城中心向周边减弱的整体态势,高暴露区主要集中于城区地带;③ 不同性别、年龄组人群的PM2.5人口暴露强度存在明显的空间分异特征,且城市内部不同人群的PM2.5暴露剂量也存在明显差异;④ PM2.5的暴露风险并非完全取决于污染物浓度的大小,而是由污染源浓度和暴露受体的空间分布特征等多方面共同决定,北京城区的高PM2.5人口暴露区才是高风险区,是未来政府有效防控污染物危害的核心区。
林金煌 , 陈文惠 , 张岸 . 2019年北京市PM2.5人群暴露剂量特征分析[J]. 地球信息科学学报, 2020 , 22(12) : 2348 -2357 . DOI: 10.12082/dqxxkx.2020.190624
In recent years, PM2.5 has become one of the main pollutants in the haze outbreak. The risk of long-term exposure to PM2.5 of high concentration may greatly increase the risk of disease and endanger the physical and mental health of residents. In this study, Beijing was taken as the research area where air pollution was serious and the population was highly concentrated. Based on the data of PM2.5 concentration, the grid data of population spatial distribution, and the long-term respiratory volume of different populations in Beijing in 2019, an assessment model of PM2.5 population exposure was established. Furthermore, the spatial distribution characteristics of PM2.5 population exposure intensity and the differences of exposure-response among different populations in Beijing in 2019 were analyzed. The results show that: (1) In 2019, the PM2.5 concentration in Beijing is the highest in winter, and the daily average concentration is 48.89 μg/m3, which shows an overall trend of low in the north and high in the south; (2) There are significant spatial differences in PM2.5 population exposure, and the PM2.5 exposure of different populations shows an overall trend of weakening from the center of the city to the surrounding areas, and the high exposure areas were mainly concentrated in urban areas; (3) There are obvious spatial differences in the exposure intensity of PM2.5 population in different gender and age groups, and there were also significant differences in the response of PM2.5 exposure among different populations in the city; (4) The exposure risk of PM2.5 was not entirely determined by the concentration of pollutants, but by the concentration of pollution sources and exposure receptors, the high-risk area of population exposure to PM2.5 in Beijing urban area was the high-risk area, and it was the core area for the government to effectively prevent and control pollution hazards in the future.
表1 不同人群的长期呼吸量均值Tab. 1 The mean of long-term respiratory volume of different populations (m3/d) |
性别 | 15~44岁 | 45~59岁 | 60~79岁 | 80岁以上 |
---|---|---|---|---|
男 | 18.6 | 18.4 | 14.4 | 12.4 |
女 | 14.7 | 15.0 | 13.2 | 11.7 |
表2 北京市各地区不同性别、年龄组的人群PM2.5人均日暴露剂量Tab. 2 Per capita daily exposure dose of PM2.5 in different gender and age groups in different areas of Beijing (μg/人) |
地区 | 男性 | 女性 | 15~44岁 | 45~59岁 | 60~79岁 | 大于80岁 | 大于15岁成年人 |
---|---|---|---|---|---|---|---|
昌平区 | 468.31 | 378.02 | 438.01 | 437.27 | 359.50 | 315.60 | 426.10 |
朝阳区 | 518.21 | 420.26 | 486.52 | 487.82 | 400.70 | 350.48 | 470.38 |
大兴区 | 565.26 | 456.06 | 530.04 | 529.17 | 433.67 | 374.81 | 514.65 |
东城区 | 520.45 | 425.59 | 493.68 | 496.11 | 408.33 | 354.44 | 472.24 |
房山区 | 560.07 | 456.42 | 529.01 | 529.21 | 435.45 | 379.71 | 509.24 |
丰台区 | 529.52 | 430.17 | 496.68 | 497.82 | 409.36 | 356.63 | 480.50 |
海淀区 | 505.02 | 408.46 | 473.51 | 473.70 | 389.10 | 342.06 | 458.01 |
怀柔区 | 411.60 | 335.60 | 390.06 | 390.21 | 321.11 | 280.11 | 375.72 |
门头沟区 | 455.85 | 372.11 | 431.42 | 433.02 | 355.05 | 311.19 | 414.40 |
密云区 | 397.72 | 326.14 | 377.68 | 378.54 | 312.68 | 273.34 | 362.24 |
平谷区 | 488.31 | 399.53 | 465.23 | 463.79 | 382.94 | 333.10 | 444.51 |
石景山区 | 497.16 | 404.17 | 468.63 | 468.39 | 385.08 | 336.31 | 451.40 |
顺义区 | 480.21 | 389.88 | 452.26 | 451.55 | 371.96 | 321.13 | 436.46 |
通州区 | 564.42 | 458.59 | 533.47 | 532.55 | 439.54 | 380.55 | 512.80 |
西城区 | 518.97 | 424.10 | 494.14 | 495.66 | 407.81 | 356.64 | 471.24 |
延庆区 | 421.38 | 346.77 | 401.70 | 402.46 | 333.24 | 291.37 | 384.90 |
全区域 | 510.98 | 414.96 | 481.39 | 481.02 | 395.80 | 345.80 | 464.20 |
[1] |
|
[2] |
赵文慧, 赵文吉, 宫辉力, 等. 北京市采暖期可吸入颗粒物时空分布特征及源追踪[J]. 地理研究, 2012,31(3):417-428.
[
|
[3] |
曾静, 王美娥, 张红星. 北京市夏秋季大气PM2.5浓度与气象要素的相关性[J]. 应用生态学报, 2014,25(9):2695-2699.
[
|
[4] |
符立伟, 郭秀锐. 国内空气污染暴露水平评价方法研究进展[J]. 环境科学与技术, 2015,38(12):226-230.
[
|
[5] |
曾贤刚, 阮芳芳, 彭彦彦. 基于空间网格尺度的中国PM2.5污染健康效应空间分布[J]. 中国环境科学, 2019,39(6):2624-2632.
[
|
[6] |
杨昆, 杨玉莲, 朱彦辉, 等. 中国PM2.5污染与社会经济的空间关系及成因[J]. 地理研究, 2016,35(6):1051-1060.
[
|
[7] |
王振波, 方创琳, 许光, 等. 2014年中国城市PM2.5浓度的时空变化规律[J]. 地理学报, 2015,70(11):1720-1734.
[
|
[8] |
张亮林, 潘竟虎. 中国PM2.5人口暴露风险时空格局[J]. 中国环境科学, 2020,40(1):1-12.
[
|
[9] |
|
[10] |
|
[11] |
|
[12] |
邹滨, 彭芬, 焦利民, 等. 高分辨率人口空气污染暴露GIS空间区划研究[J]. 武汉大学学报(信息科学版), 2013,38(3):334-338.
[
|
[13] |
郭文伯, 张艳, 柴彦威. 城市居民出行的空气污染暴露测度及其影响机制—北京市郊区社区的案例分析[J]. 地理研究, 2015,34(7):1310-1318.
[
|
[14] |
谢元博, 陈娟, 李巍. 雾霾重污染期间北京居民对高浓度PM2.5持续暴露的健康风险及其损害价值评估[J]. 环境科学, 2014,35(1):1-8.
[
|
[15] |
|
[16] |
|
[17] |
韩立建. 城市化与PM2.5时空格局演变及其影响因素的研究进展[J]. 地理科学进展, 2018,37(8):1011-1021.
[
|
[18] |
王佳, 郑君瑜, 柯钊跃, 等. 典型工业源下风向居民住宅区PM2.5暴露评价[J]. 环境科学研究, 2012,25(7):745-750.
[
|
[19] |
|
[20] |
|
[21] |
|
[22] |
马静, 柴彦威, 符婷婷. 居民时空行为与环境污染暴露对健康影响的研究进展[J]. 地理科学进展, 2017,36(10):1260-1269.
[
|
[23] |
北京市统计局. 北京统计年鉴2019[M]. http://tjj.beijing.gov.cn/.
[ Beijing Municipal Bureau Statistics. Beijing Statistical Yearbook 2019[M]. http://tjj.beijing.gov.cn/]
|
[24] |
|
[25] |
别同, 韩立建, 田淑芳, 等. 人口城市化对空气污染人群暴露+贡献的定量方法研究[J]. 生态学报, 2018,38(13):4570-4583.
[
|
[26] |
梅杨, 党丽娜, 杨勇, 等. 基于时空克里格的PM2.5时空预测及分析[J]. 环境科学与技术, 2016,39(7):157-163.
[
|
[27] |
陈琳, 任春颖, 王宗明, 等. 基于克里金插值的耕地表层土壤有机质空间预测[J]. 干旱区研究, 2017,34(4):798-805.
[
|
[28] |
陈晔峰, 杨明, 赵放, 等. 基于克里金插值的高分辨率降水量融合方法及质量评估[J]. 科技通报, 2019,35(1):49-53.
[
|
[29] |
刘婕, 徐东群. 环境空气污染空间分布插值模型及其应用[J]. 卫生研究, 2020,49(1):169-173.
[
|
[30] |
宓科娜, 庄汝龙, 梁龙武, 等. 长三角PM2.5时空格局演变与特征—基于2013-2016年实时监测数据[J]. 地理研究, 2018,37(8):1641-1654.
[
|
[31] |
王占山, 李云婷, 陈添, 等. 2013年北京市PM2.5的时空分布[J]. 地理学报, 2015,70(1):110-120.
[
|
[32] |
刘靖, 单春艳, 梁晓宇. 唐山市基于GIS的PM2.5空间聚集性及分区管控[J]. 中国环境科学, 2020,40(2):513-522.
[
|
[33] |
环境保护部. 中国人群暴露参数手册(成人卷)[M]. 北京: 中国环境科学出版社, 2013.
[ Ministry of environmental protection. Handbook of human exposure parameters in China (adult volume)[M]. Beijing: China Environmental Science Press, 2013. ]
|
/
〈 | 〉 |