新型冠状病毒肺炎疫情可视化进展与分析
应 申(1979— ),男,安徽界首人,博士,教授,主要从事地图学、3DGIS与三维地籍、位置数据关联等研究。E-mail: shy@whu.edu.cn |
收稿日期: 2020-06-10
修回日期: 2020-09-10
网络出版日期: 2021-04-25
基金资助
“十三五”国家重点研发计划项目(2017YFB0503500)
版权
Visualization of the Epidemic Situation of COVID-19
Received date: 2020-06-10
Revised date: 2020-09-10
Online published: 2021-04-25
Supported by
National Key Research and Development Program of China(2017YFB0503500)
Copyright
新冠肺炎疫情期间,疫情数据成为民众关注的重点,涌现出了大量可视化图件,及时地向公众传达着疫情的数量信息和时空分布及变化,帮助大众快速了解疫情当前状况、推断发展趋势。本文从疫情数据可视化表达内容的维度出发,分析不同可视化的表达形式以及其对疫情数据的加工程度,结合示例把可视化分为“1阶”、“2阶”和“多阶”,并分析各自表达的数据类型、表达方式、设计特点和信息传递。同时,针对疫情可视化中的不足,探讨了数据统计中制图单元多级选择、数据分类中的极值处理问题,以及疫情可视化手段中不同颜色的内涵、质底法地图中区域面积和统计单元的影响、符号地图中符号压盖处理、热力图中比例尺的影响、统计图表和标注信息等在疫情可视化中的设计问题,指出疫情可视化设计中的视觉效果误用、设计过于复杂的误区,最后指出疫情信息可视化应具备讲故事的能力、问题针对性的特点,以图面简洁、高效信息传递为根本,为制图者合理设计图表和用户理性阅读疫情地图提供参考。
应申 , 窦小影 , 徐雅洁 , 苏俊如 , 李霖 . 新型冠状病毒肺炎疫情可视化进展与分析[J]. 地球信息科学学报, 2021 , 23(2) : 211 -221 . DOI: 10.12082/dqxxkx.2021.200301
The COVID-19 epidemic has extremely attracted our attentions and lots of maps and visualization charts were created to represent and disseminate the information about COVID-19 in time, which exactly became a key role for the public to acquire and understand the quantitative information and spatial-temporal information of COVID-19. The paper analyzed the dimension of data for COVID-19 and processing levels about them, then divided the COVID-19 visualization into three types, that is 1-order visualization, 2-order visualization and multi-order visualization for COVID-19, based on direct data or indirect data of COVID-19 with the corresponding visualization methods, characteristics and information transmission Shortcomings and weakness of visualization methods for COVID-19 were analyzed in details, from the aspects of multiple scale unit in spatial data statistics, max value dealing in data classification, also many key design points were described including color connotation in disease visualization, the influences of area / unit size in visualization, symbol overlapping, multiple-scale heat maps and labels in statistical tables. The paper indicated the visualization traps of COVID-19, such as misuse of visual effects and excessive visualization, and reasonable abilities of COVID-19 visualization including map-story narrative methods and visualization pertinence for specific problems should be considered sufficiently to provide the references for cartographers to design the maps and for readers to understand the maps.
图2 疫情地图分类注:图(a)来源于https://hgis.uw.edu/virus/;图(b)来源于https://coronavirus.jhu.edu/map.htm。 Fig. 2 COVID-19 maps with different symbols |
图4 疫情病例个体行踪可视化注:来源于www.bilibili.com/video/av98344374n。 Fig. 4 Visualization of personal trajectory about individual case |
图5 疫情时间轴可视化注:图(a)图来源https://www.healthmap.org/covid-19/;图(b)来源http://zeelab.cn/WuhanThemeRiver。 Fig. 5 COVID-19 visualization with timeline |
图6 疫情晴雨表可视化注:来源http://vis.pku.edu.cn/ncov/barometer/。 Fig. 6 COVID-19 visualization with barometer |
图7 疫情决策分析地图注:图(a)图来源于https://www.unacast.com/covid19/social-distancing-scoreboard#scoreboard;图(b)来源于mp.weixin.qq.com/s/i8cVCK3Ko79QoFWTF7cEpA。 Fig. 7 COVID-19 decision map |
图10 可视化中的极值处理注:图(a)来源于:https://www.ft.com/content/a26fbf7e-48f8-11ea-aeb3-955839e06441;图(b)来源于https://weibo.com/。 Fig. 10 Special value processing in COVID-19 visualization |
表1 不同图表表达优缺点Tab. 1 The advantages and disadvantages of different charts |
图表类型 | 表达内容 | 欠缺点 |
---|---|---|
质底法地图 | 区域差异 | 整体上对面积小的区域表达不友好 |
符号地图 | 区域差异 | 面积小的聚集区域容易符号压盖 |
热力图 | 整体分布、扩散情况 | 区域具体数值 |
动态地图 | 历史演变情况 | Web应用动态图多,静态多以快照形式展示 |
柱状图 | 直观比较数据大小 | 空间信息表达弱 |
折线图 | 展示变化趋势 | 无法表达空间关系 |
饼图 | 比较数据大小 | 空间信息表达弱 |
河流图 | 类别之间比较和各类变化趋势 | 空间信息表达弱 |
晴雨表 | 类别比较和变化趋势 | 无法表达空间关系 |
[1] |
李立明, 王艳红, 吕筠. 流行病学发展的回顾与展望[J]. 中华疾病控制杂志, 2008,12(4):304-308.
[
|
[2] |
中国疾病预防控制中心. 新型冠状病毒肺炎聚集性疫情流行病学调查指南[EB/OL]. 2020- 2- 13. http://www.chinacdc.cn/jkzt/crb/zl/szkb_11803/jszl_11815/202002/t20200220_213405.html
[ Chinese Center for Disease Control and Prevention. A guide to the epidemiological investigation of novel coronavirus pneumonia clustered epidemic situation [EB/OL]. 2020- 2- 13. http://www.chinacdc.cn/jkzt/crb/zl/szkb_11803/jszl_11815/202002/t20200220_213405.html
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
李德仁, 邵振峰, 于文博, 等. 基于时空位置大数据的公共疫情防控服务让城市更智慧[J]. 武汉大学学报·信息科学版, 2020,45(4):475-487,556.
[
|
[8] |
|
[9] |
杨伊静. 大数据:打造战“疫”利器[J]. 中国科技产业, 2020(4):7-8.
[
|
[10] |
孟郁洁, 戚晓鹏, 王松旺. 急性发热性疾病监测系统设计与实现[J]. 医学信息学杂志, 2019,40(5):36-40.
[
|
[11] |
周奕洋, 张泽, 钱庆. 肿瘤流行病数据可视化系统设计与应用[J]. 医学信息学杂志, 2016,37(5):46-50.
[
|
[12] |
张振华, 吴开超. 基于Twitter的流感疫情可视化系统[J]. 计算机系统应用, 2015,24(3):69-74.
[
|
[13] |
朱梦泽, 赵海英. 叙事式可视化综述[J]. 计算机辅助设计与图形学学报, 2019,31(10):1719-1727.
[
|
[14] |
白净, 吴莉. 健康传播中的可视化应用——以新冠肺炎报道为例[J]. 新闻与写作, 2020(4):31-36.
[
|
[15] |
陈晓慧, 徐立, 葛磊, 等. 传染病传播数据可视分析综述[J]. 计算机辅助设计与图形学学报, 2020,32(10):1581-1593.
[
|
[16] |
沈雨尘. COVID-19疫情数据的时空地理空间可视化分析(上篇)[EB/OL]. 2020-2-20.mp. weixin.qq.com/s/ByBSV0K1SpMwC-N12rbQfQ.
[
|
[17] |
疫情地图项目组. “说谎”的疫情地图,隐藏了什么? [EB/OL]. 2020-1-31.mp.weixin.qq.com/s/U9BMlPVVPy N_rjv_HT1R_w.
[ Epidemic Map Project Team. What is hidden in the "lying" epidemic map? [EB/OL]. 2020-1-31.mp.weixin.qq.com/s/U9BMlPVVPyN_rjv_HT1R_w. ]
|
[18] |
Kenneth Field. Mapping coronavirus, responsibly[EB/OL]. 2020-2-25. www.esri.com/arcgis-blog/products/product/mapping/mapping-coronavirus-responsibly.
|
[19] |
孙远波, 闻芷艺, 徐瑞鸽, 等. 新型冠状病毒肺炎疫情数据可视化设计综述[J]. 包装工程, 2020,41(8):51-62.
[
|
[20] |
ESRI. 对分级符号的数字字段进行分类[EB/OL]. 2020-5-25. desktop.arcgis.com/zh-cn/arcmap/10.3/map/working-with-layers/classifying-numerical-fields-for-graduated-symbols.htm.
[ ESRI. Classify the numeric fields of the grade symbol[EB/OL]. 2020-5-25. desktop.arcgis.com/zh-cn/arcmap/10.3/map/working-with-layers/classifying-numerical-fields-for-graduated-symbols.htm. ]
|
[21] |
李楠. 疫情期间的信息化视觉思考(三):数据可视化[EB/OL]. 2020-4-22.mp.weixin.qq.com/s/CNmboW1yW DGI3I-JogJSkQ.
[
|
[22] |
|
[23] |
张洪岩, 周成虎, 闾国年, 等. 试论地学信息图谱思想的内涵与传承[J]. 地球信息科学学报, 2020,22(4):653-661.
[
|
/
〈 |
|
〉 |