突发自然灾害事件网络舆情传播特征及影响因素研究
赵 飞(1979— ),女,山东高唐人,副研究员,主要从事灾害评估与风险防范研究。E-mail: zhaofeichina@sina.com |
收稿日期: 2020-09-12
要求修回日期: 2020-10-26
网络出版日期: 2021-08-25
基金资助
国家重点研发计划项目(2018YFC1508900)
国家重点研发计划项目(2017YFC1503000)
版权
Research On the Dissemination Characteristics and Influencing Factors of Network Public Opinion of Sudden Natural Disaster Events
Received date: 2020-09-12
Request revised date: 2020-10-26
Online published: 2021-08-25
Supported by
National Key Research and Development Program of China(2018YFC1508900)
National Key Research and Development Program of China(2017YFC1503000)
Copyright
随着网络技术的发展,网络舆情分析在应对突发事件中发挥的作用日益显著。自然灾害发生后,准确把握舆情信息传播特征并分析其影响因素有助于应急管理部门及时采取有效的应急救援措施。本文以台风“利奇马”为例,基于“新浪舆情通”系统搜集的相关微博、微信、论坛、网站等全网舆情数据,探究台风灾害全过程舆情信息的时空分布特征,开展灾害舆情信息影响因素相关性分析。研究表明:① 相比于灰色EGM(1, 1)模型,ARIMA模型对于舆情的短时预测具有较高的适用度,所预测的舆情信息的时序变化与利奇马台风的生命周期相符;② 舆情的空间分布具有聚集性,其分布与受灾程度呈正相关关系,但同时受灾区经济状况和网络普及率影响;③ 灾情严重程度与原创舆情信息的相关性高于转发舆情信息,原创舆情信息更能反映受灾地区的实际受灾情况。研究内容为应急管理部门及时掌握舆情走势并调整应急救助决策提供了指导价值。
赵飞 , 廖永丰 . 突发自然灾害事件网络舆情传播特征及影响因素研究[J]. 地球信息科学学报, 2021 , 23(6) : 992 -1001 . DOI: 10.12082/dqxxkx.2021.200526
With the development of network technology, the analysis of internet public opinion plays an increasingly important role in dealing with the emergency. After the occurrence of natural disasters, it is helpful for the emergency management department to take effective emergency rescue measures in time to accurately grasp the characteristics of public opinion information and analyze its influencing factors. Based on the network public opinion data related to Typhoon Lekima, including micro-blog, WeChat, forums, websites, and other online public opinion data collected by the "Public opinion on Sina" system, this article analyzes the spatiotemporal characteristics of disaster public sentiment in the process of disaster. The influencing factors of the disaster public opinion information are also analyzed. The results show that the temporal distribution of public opinion information is consistent with the lifecycle of Typhoon Lekima. Compared with the grey EGM (1,1) model, ARIMA model has a higher applicability for short-term prediction of public opinion. The spatial distribution of public opinion is positively related to the severity of the disaster and also related to the economic condition and the network popularity in the affected area. The correlation between the severity of the disaster and the original public opinion information is stronger than that between the severity of the disaster and the transmitted public opinion information. The original public opinion information can better reflect the actual situation of affected areas. The study provides guidance for emergency departments to grasp the trend of public opinion and adjust emergency measures timely.
Key words: Lekima; Typhoon; disasters; internet public opinion; time and space analysis; microblog; emergency; rescue
表1 全局莫兰指数分析结果Tab. 1 Analysis results of global Moran's I |
空间权重矩阵构建方法 | 莫兰指数 | Z值 | p值 |
---|---|---|---|
反距离法 | 0.0459 | 0.9513 | 0.3414 |
距离范围法 | 0.0637 | 1.3192 | 0.1870 |
共边邻接法 | -0.1374 | -1.6360 | 0.1018 |
k近邻法(k=4) | 0.1281 | 1.6327 | 0.1025 |
k近邻法(k=5) | 0.0922 | 1.4159 | 0.1567 |
k近邻法(k=6) | 0.0743 | 1.3421 | 0.1795 |
k近邻法(k=7) | 0.0436 | 1.0509 | 0.2932 |
k近邻法(k=8) | 0.0583 | 1.3743 | 0.1693 |
k近邻法(k=9) | 0.0694 | 1.6975 | 0.0895 |
k近邻法(k=10) | 0.0422 | 1.3554 | 0.1752 |
表2 局部莫兰指数分析结果Tab. 2 Analysis Results of Local Moran's I |
省份 | 舆情数量/起 | 局部莫兰指数 | Z值 | p值 | 聚集类型 |
---|---|---|---|---|---|
山东 | 730 950 | 0.9901 | 3.7047 | 0.000212 | H-H |
浙江 | 667 165 | 0.6154 | 2.3446 | 0.019047 | H-H |
广东 | 761 821 | -1.2235 | -4.3323 | 0.000015 | H-L |
表3 逐步回归分析参数Tab. 3 Stepwise regression analysis parameters |
变量 | 模型1 | 模型2 | 模型3 | 模型4 |
---|---|---|---|---|
-0.493 | -1.474 | -0.708 | -0.476 | |
1.187 | 1.038 | 0.969 | 0.959 | |
4.487 | 4.129 | 3.386 | ||
0.035 | 0.037 | |||
0.085* | ||||
0.805 | 0.868 | 0.887 | 0.889 |
注:*表示未通过95%显著性水平检验。当加入的变量多于5个时,各项变量的影响系数的显著性水平逐渐变差,因此未列出。 |
[1] |
中国互联网络信息中心(CNNIC). 第45次中国互联网络发展现状统计报告[R]. 北京:中国互联网信息中心, 2020.
[ China Internet Network Information Center. The 45th statistical report on the development of internet in China[R]. Beijing: China Internet Network Information Center, 2020. ]
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
秦琴, 汤书昆. 突发自然灾害网络舆情风险监测指标体系研究[J/OL]. 电子科技大学学报(社科版):1-9 [2020-04-29]. https://doi.org/10.14071/j. 1008-8105(2019)-3023.
[
|
[7] |
郑步青, 邹红霞, 胡欣杰. 基于拐点的网络舆情预测研究[J]. 计算机科学, 2018,45(S2):539-541,575.
[
|
[8] |
杨茂青, 谢健民, 秦琴, 等. 基于RF算法的突发事件网络舆情演化预测分析[J]. 情报科学, 2019,37(7):95-100.
[
|
[9] |
|
[10] |
梁春阳, 林广发, 张明锋, 等. 社交媒体数据对反映台风灾害时空分布的有效性研究[J]. 地球信息科学学报, 2018,20(6):807-816.
[
|
[11] |
熊俊楠, 赵云亮, 程维明, 等. 四川省山洪灾害时空分布规律及其影响因素研究[J]. 地球信息科学学报, 2018,20(10):1443-1456.
[
|
[12] |
阮文奇, 李勇泉. 自然灾害型危机事件对客源地旅游需求的影响及空间差异——九寨沟地震后的时空异质性分析[J]. 经济地理, 2018,38(8):214-223.
[
|
[13] |
王敬泉, 王凯. 基于GIS的突发事件网络舆情传播可视化探究[J]. 测绘通报, 2019(12):142-146.
[
|
[14] |
王波, 甄峰, 席广亮, 等. 基于微博用户关系的网络信息地理研究——以新浪微博为例[J]. 地理研究, 2013,32(2):380-391.
[
|
[15] |
杨敏, 李君轶, 陈宏飞. 景区危机事件信息空间扩散效应及其影响因素分析[J]. 陕西师范大学学报(自然科学版), 2017,45(5):92-100.
[
|
[16] |
陈昱杉, 李凤全, 王天阳, 等. 网络舆情信息扩散中距离的影响——以新浪微博“九寨沟地震”事件为例[J]. 浙江师范大学学报(自然科学版), 2020,43(1):77-84.
[
|
[17] |
姚可桢, 岳书平. 网络大数据下的中国现代食甜习惯空间分布特征及其影响因素研究[J]. 地球信息科学学报, 2020,22(6):1202-1215.
[
|
[18] |
中央气象台. 超强台风“利奇马”的一生[EB/OL]. http://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xzytq/2019 08/t20190814_533010.html, 2019-08-14.
[ Chinese Central Meteorological Station. Lifetime of super typhoon "Lekima"[EB/OL]. http://www.cma.gov.cn/2011xwzx/2011 xqxxw/2011xzytq/201908/t20190814_533010.html, 2019-08-14.]
|
[19] |
许小峰. 中国气象年鉴[M]. 北京: 气象出版社, 2017.
[
|
[20] |
中国互联网协会. 中国互联网发展报告2019[R]. 北京:中国互联网协会, 2019.
[
|
[21] |
中国气象局. 登陆热带气旋名录[EB/OL]. http://tcdata.typhoon.org.cn/, 2020.
[ China Meterological Administration. List of landing tropical cyclones [EB/OL]. http://tcdata.typhoon.org.cn/, 2020.]
|
[22] |
王宁, 赵胜洋, 单晓红. 基于灰色系统理论的网络舆情预测与分级方法研究[J]. 情报理论与实践, 2019,42(2):120-126.
[
|
/
〈 | 〉 |