全球离散格网系统结构要素一体化编码与生成方法
陈艺航(1996— ),男,河南郑州人,硕士生,主要从事全球离散格网和空间数据模型研究。E-mail: Hncyh612@163.com |
收稿日期: 2021-11-09
要求修回日期: 2021-01-18
网络出版日期: 2021-10-25
基金资助
河南省科技攻关项目(212102210377)
河南省地质矿产勘查开发局2018年财政规划项目(HNGM2018103)
版权
The Uniform Encoding and Generation Method of Structure Elements of Discrete Global Grid Systems
Received date: 2021-11-09
Request revised date: 2021-01-18
Online published: 2021-10-25
Supported by
Science and Technology Project of Henan Province(212102210377)
The 2018 Financial Planning Project of Henan Provincial Bureau of Geology and Mineral Exploration and Development(HNGM2018103)
Copyright
全球离散格网系统是用于构建数字地球的一种有效空间数据组织框架,其中,三角形、四边形和六边形等多种单元形状的格网已在各领域广泛应用。各具特色的格网满足了各专业领域的应用需求,但也因其格网类型的差异而阻碍了跨领域的数据共享,同时单一格网在面向多领域科学问题上存在一定的局限性,因此实现多类型离散格网系统之间的互操作功能具有重要的研究意义。不同类型格网结构要素相互转换机制的建立,是实现异构格网数据集互操作的关键。本文针对这一问题,首先,研究了三类全球离散格网系统结构要素的统一特征及格点和格元的相互关系,进一步揭示了其等差圈层的分布模式;其次,以球面四元三角网为例,建立了格点的等差圈层编码,随后,根据格点与格元的关系提出了基于格点索引的全球离散格网一体化编码与生成方法;最后,利用该方法生成了河南省地表高程的格点模型、三角形格网模型、菱形格网模型和六边形格网模型,并验证了其正确性和可行性,为全球离散格网的互操作机制提供一种新思路。
陈艺航 , 王金鑫 , 曹泽宁 , 秦子龙 , 石焱 . 全球离散格网系统结构要素一体化编码与生成方法[J]. 地球信息科学学报, 2021 , 23(8) : 1382 -1390 . DOI: 10.12082/dqxxkx.2021.200672
As the supporting technology of the digital Earth platform, the Discrete Global Grid System is a frontier and hotspot in the field of Earth information science and has been the subject of abundant researches. It can subdivide an ellipsoid without changing its grid shape. Each subdivision level has a regular structure, so there are strict transformation relations between grids at different subdivision levels, which provides a unified expression model for the fusion of geographic data with arbitrary distribution and different scales. In Discrete Global Grid System, triangular, diamond, and hexagon grid cells are widely used. Although each grid system has its own characteristics and can meet the application needs in various professional fields, but the differences among different grid systems inevitably hinder cross-field data sharing. Different grid systems have their own advantages and disadvantages in solving different scientific problems, and their corresponding spatial operation and computational analysis also vary in complexity. Furthermore, because the data representation of a single type of grid division is limited in multi-domain scientific problems, the development of an interoperation function of a multi-type Discrete Global Grid System is of great significance. The key to realize the interoperation of heterogeneous grid data sets is to establish a mechanism for the interconversion of different types of grid structure elements. Aiming at this problem, this paper studied the unified characteristics of structural elements in three Discrete Global Grid Systems, the relationships between vertices and grids, as well as the distribution patterns of the arithmetic layer. Secondly, taking the Quaternary Triangular Mesh as an example, the arithmetic layer encoding and generation method of the vertices were established while the uniformity of the vertices was analyzed. Then, according to the relationships between the vertices and grids, this paper proposed a uniform encoding and generation method for Discrete Global Grid System based on the vertices index. Finally, using this method, we generated the vertex model, triangle grid model, diamond grid model, and hexagonal grid model of surface elevation of Henan Province. We further verified the correctness and feasibility of the methods. This study provides a theoretical basis for exchanging, unifying, and standardizing the data in different types of Discrete Global Grid Systems and a new idea for the interoperability mechanism of different Discrete Global Grid Systems.
表1 不同格网的分布模式(北半球)Tab. 1 Distribution pattern of different grids in the Northern Hemisphere |
格网单元 | 类型 | 总圈层数(L) | 第m圈层上点的数量 | 相邻圈层点的数量的等差公式 |
---|---|---|---|---|
三角形 | 格心 | 2N | 8m-4 | Sm-Sm-1=8 |
格点 | 2N+1 | 4 m | Sm-Sm-1=4 | |
菱形 | 格心 | 2N | 4 m | Sm-Sm-1=4 |
格点 | 2N+1 | 4 m | Sm-Sm-1=4 | |
六边形 | 格心 | 2N+1 | 4 m | Sm-Sm-1=4 |
格点 | 2N | 8m-4 | Sm-Sm-1=8 |
表2 不同格网的格心与格点的对应关系Tab. 2 Distribution pattern of different grids in the Northern Hemisphere |
单元形状 | 类型 | 点的对应关系 | ||
---|---|---|---|---|
三角形 | 菱形 | 六边形 | ||
三角形 | 格心 | 格点 | ||
格点 | 格点/格心 | 格心 | ||
菱形 | 格心 | 格点 | 格心 | |
格点 | 格点 | 格心 | ||
六边形 | 格心 | 格点 | 格点 | |
格点 | 格心 |
表3 邻近搜索规则Tab. 3 Neighbor finding rules for points in the northern hemisphere |
位置 | Adjacent_1 | Adjacent_2 | Adjacent_3 | Adjacent_4 | Adjacent_5 | Adjacent_6 | |
---|---|---|---|---|---|---|---|
非边界 | (L-1,a-1,N) | (L-1,a,N) | (L,a+1,N) | (L+1,a+1,N) | (L+1,a,N) | (L,a-1,N) | |
边界 | (L-1,a,N) | (L,a+1,N) | (L+1,a+1,N) | (L+1,a,N) | (L-1,a-1,N) | (L,a-1,N) |
[1] |
|
[2] |
|
[3] |
赵学胜, 贲进, 孙文彬, 等. 地球剖分格网研究进展综述[J]. 测绘学报, 2016, 45(S1):1-14.
[
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
杜灵瑀, 贲进, 马秋禾, 等. 基于弱对偶的平面三角形格网离散线转化生成算法[J]. 武汉大学学报·信息科学版, 2020, 45(1):105-110.
[
|
[9] |
杜灵瑀, 贲进, 马秋禾, 等. 基于弱对偶的平面三角形格网离散线转化生成算法[J]. 武汉大学学报·信息科学版, 2020, 45(1):105-110.
[
|
[10] |
|
[11] |
贲进, 童晓冲, 周成虎, 等. 正八面体的六边形离散格网系统生成算法[J]. 地球信息科学学报, 2015, 17(7):789-797.
[
|
[12] |
赵志鹏. 面向模式计算的球面复合菱形离散格网硏究[D]. 南京:南京师范大学, 2015:11-93.
[
|
[13] |
刘坤. 基于Fiber Bundle的全球离散格网通用数据模型[D]. 南京:南京师范大学, 2019:11-22.
[
|
[14] |
周成虎, 欧阳, 马廷. 地理格网模型研究进展[J]. 地理科学进展, 2009, 28(5):657-662.
[
|
[15] |
|
[16] |
|
[17] |
|
[18] |
白建军. 基于正八面体的四孔六边形球面格网编码及索引[J]. 遥感学报, 2011, 15(6):1125-1137.
[
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
王金鑫, 陈艺航, 曹泽宁, 等. 球面四元三角网修正方向编码的邻近搜索算法[J]. 测绘科学, 2021, 46(5):196-202.
[
|
[24] |
|
[25] |
贲进, 童晓冲, 张永生, 等. 球面等积六边形离散格网的生成算法及变形分析[J]. 地理与地理信息科学, 2006, 22(1):7-11.
[
|
[26] |
白建军, 赵学胜, 陈军. 基于线性四叉树的全球离散格网索引[J]. 武汉大学学报·信息科学版, 2005, 30(9):805-808.
[
|
[27] |
地理空间数据云. (http://www.gscloud.cn/sources/accessdata/310 ).
[Geospatial Data Cloud. (http://www.gscloud.cn/sources/accessdata/310 ).]
|
[28] |
|
/
〈 |
|
〉 |