基于出行时空数据的分时租赁汽车与网约车出行场景比较研究
许 研(1983— ),女,辽宁锦州人,副教授,主要从事共享出行行为复杂性研究。E-mail: bnuxuyan@126.com |
收稿日期: 2020-10-14
要求修回日期: 2021-03-23
网络出版日期: 2021-10-25
基金资助
北京社会科学基金项目(18GLC080)
版权
Travel Scenes Comparison of Time-Sharing and Car-Hailing based on Traveling Spatiotemporal Data
Received date: 2020-10-14
Request revised date: 2021-03-23
Online published: 2021-10-25
Supported by
Beijing Social Science Fund(18GLC080)
Copyright
分时租赁和网约车同属共享汽车,但规模对比悬殊。找到差异化的出行场景有利于分时租赁在网约车主导的共享汽车市场中谋求立足之地。本文以北京地区某分时租赁公司2017年5月1日—30日的出行订单和2018年4月23日—29日的网约车出行订单为研究对象,结合城市兴趣点数据,利用地理信息层次聚类、关联规则等方法挖掘两共享汽车的典型出行场景,并进行比较分析。研究表明:① 网约车主要服务于“通勤出行”和“市内商务区之间的出行”,2种出行场景分别占网约车订单总量的40.3%和28.7%;② 分时租赁主要服务非通勤出行,其特色出行场景是“往返城市旅游景区的出行”、“城市旅游景区之间的出行”和“外城住宅商务混合区的午夜出行”,分别占分时租赁订单总量的24.4%、6.9%和5.5%。③ 在分时租赁的特色出行场景中,分时租赁与网约车或传统租车等共享出行方式相比费用更低,仅占其费用的25%~35%,具有较大的竞争优势。本研究有关出行场景挖掘的方法和结论可以为北京市分时租赁的推广以及其他共享出行研究提供借鉴和参考。
许研 , 纪雪洪 , 叶玫 . 基于出行时空数据的分时租赁汽车与网约车出行场景比较研究[J]. 地球信息科学学报, 2021 , 23(8) : 1461 -1472 . DOI: 10.12082/dqxxkx.2021.200602
Both time-sharing rental cars and car-hailing are car sharing service, but with different scales. Finding differentiated travel scenes is conducive to time-sharing in seeking a foothold in the car sharing market dominated by car-hailing. This research uses car sharing records data combined with city's points of interest (POI) data to analyze the spatial temporal characteristics, and typical travel scenes of time-sharing and car-hailing in Beijing. Firstly, hierarchical clustering method was used to define the most distinguished clusters of city's grid cells based on POI data. Dunn index examined the optimal cluster number. Secondly, Origin and Destination (OD) locations of each car-sharing trip were labelled by the cluster types. The users' preferences were observed from OD cluster pairs appearing more frequently than others in the records. Thirdly, typical travel scenes were extracted by analyzing association rules of these cluster pairs. In the end, spatiotemporal patterns of typical travel scenes were tested. The findings of this study can be divided into three portions. Firstly, car-hailing mainly serves commuters and travels among business districts within the city. Secondly, time-sharing mainly serves non-commuter travels, and the representative travel scenes are short-distance city travel for tourism and Midnight travel in suburban areas. Many of these observed relationships are interpretable. For example, a short-distance city travel for tourism usually lasts half a day. Renting behaviors avoid the morning and evening rush hours of commuting. A midnight travel in suburban areas happens outside the city center, which usually lasts less than an hour since public transport is not available during that time. Thus, this travel scene seems to be related with urgent travel demands. Thirdly, the cost of time-sharing is far lower than that of other alternative modes and constitutes only 30%~50% cost of others, indicating that car sharing is beneficial when compared with other modes in these scenarios obtained in our research. These findings can serve as references and suggestions for time-sharing's promotion and operation process. The travel scenes mining method proposed in this study can be repeated in other car sharing researches.
表1 OD城市功能对的示例Tab. 1 Samples of OD cluster types data |
订单序号 | 起点的城市功能 | 终点的城市功能 |
---|---|---|
1 | c1 | c2 |
2 | c1 | c3 |
3 | c2 | c4 |
4 | c2 | c1 |
5 | c1 | c3 |
6 | c4 | c5 |
7 | c5 | c1 |
8 | c1 | c5 |
9 | c1 | c3 |
10 | c2 | c6 |
… | … | … |
表2 数据来源描述Tab. 2 Data source introduction |
数据 | 数据来源 | 时间 |
---|---|---|
分时租赁出行订单数据 | 北京某分时租赁运营公司 | 2017年5月 |
网约车出行订单数据 | 滴滴平台 | 2018年4月 |
城市空间POI数据 | 百度地图平台 | 2017年 |
各类共享汽车的价目表数据 | 网络公开资料整理 | 2017年 |
表3 不同聚类数对应的DVI指数和Silhouette指数Tab. 3 DVI index and Silhouette index of different cluster number |
聚类数 | DVI指数 | Silhouette指数 |
---|---|---|
2 | 0.0810 | 0.2704 |
3 | 0.0813 | 0.2622 |
4 | 0.0831 | 0.2182 |
5 | 0.0832 | 0.2038 |
6 | 0.0849 | 0.2467 |
7 | 0.0843 | 0.2367 |
8 | 0.0466 | 0.2210 |
9 | 0.0468 | 0.2292 |
10 | 0.0479 | 0.2275 |
11 | 0.0481 | 0.2397 |
12 | 0.0481 | 0.2236 |
图3 不同城市功能区块的POI特征描述注:图(a)代表性地点:人民出版社第二工作区、北海荷花市场、清华大学家属院;图(b)代表性地点:香山后山、温榆河、通惠河、首都机场;图(c)代表性地点:紫竹院公园、北京动物园、西山八大处、奥林匹克森林公园;图(d)代表性地点:首都图书馆、和谐文化创意产业园、半壁店文化产业园;图(e)代表性地点:北医三院、金融街、中关村海淀黄庄、国贸大厦;图(f)代表性地点:首钢旧址/中国动漫游戏城、国展中心(新馆)、丰台科技园。 Fig. 3 Profile of each city cluster type's POI distribution |
表4 网约车和分时租赁的的高频项目集比较分析表Tab. 4 Frequent items of Time-Sharing andCar-Hailing OD cluster types datasets |
OD城市 功能对 | 网约车/% | 分时租赁/% | |||
---|---|---|---|---|---|
支持度 (S≥5%) | 置信度 (C≥30%) | 支持度 (S≥5%) | 置信度 (C≥30%) | ||
5==>5 | 28.7 | 53.1 | 16.9 | 30.5 | |
3==>3 | - | - | 6.9 | 16.8 | |
6==>6 | 3.3 | 19.6 | 5.5 | 13.3 | |
5==>6 | 10.1 | 24.8 | 7.9 | 25.8 | |
6==>5 | 9.1 | 59.4 | 6.5 | 34.7 | |
3==>5 | 4.2 | 53.4 | 5.0 | 30.1 | |
2==>5 | 7.4 | 55.5 | 4.1 | 32.7 | |
4==>5 | 6.9 | 51.3 | - | - | |
1==>5 | 6.8 | 51.6 | 6.4 | 38.0 | |
6==>3 | - | - | 6.5 | 31.2 | |
5==>3 | 4.3 | 10.9 | 7.4 | 22.3 | |
3==>6 | 2.7 | 17.2 | 6.5 | 31.2 |
注:斜体下划线标记的是挖掘出的频繁项目集。但要同时满足(S≥5%,C≥30%)条件才能成为强关联规则,蓝色背景为标记的是强关联规则。空白代表支持度的结果小于1%,算法默认不给出结果。 |
表5 分时租赁典型出行场景的成本优势比较Tab. 5 Comparisons of rental fee between car sharing and alternative traffics |
典型出行场景 | 时长/h | 费用/元 | 替代出行方式 | 费用/元 | 分时租赁占替代方式费用比/% |
---|---|---|---|---|---|
3==>5 | 2.27 | 59.17 | 网约车 | 188.81 | 31.3 |
5==>3 | 2.74 | 67.90 | 网约车 | 226.7 | 30.0 |
3==>6 | 1.80 | 39.38 | 网约车 | 151.0 | 26.1 |
6==>3 | 2.47 | 65.84 | 网约车 | 204.9 | 32.1 |
3==>3 | 3.28 | 57.31 | 传统租车 | 1982 | 28.9 |
6==>6 | 0.90 | 46.003 | 网约车 | 156.4 4 | 29.4 |
注:① 北京市的网约车主要以出租车为主,根据2018年前北京市出租车定价标准,3 km以内起步价为13元,3 km以上2.3元/h。晚11时-早5时的深夜出行每公里加收20%的服务费。出行场景3==>5中,假设驾驶2.27 h,市内驾驶时速为35 km/h,网约车费用为188.8元。② 以神州租车公司经济型轿车作为参考,日租费用为198元/日。③ 分时租赁的夜间价格高于日间价格。④ 假设该出行场景中用户一直驾驶车辆,夜间出行时速60 km/h,但该时段加收20%的服务费,所以网约车的费用为156.4元。即使网约车收费较高,但此时此地很有可能有价无市。 |
[1] |
|
[2] |
罗兰贝格. 2018年中国汽车共享出行市场分析预测报告[R]. 2018年 1月.
[
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
国信证券经济研究所. 2018年共享汽车行业深度分析报告[R]. 2018年6月.
[Guoxin Securities Economic Research Institute. In depth analysis report of shared automobile industry in 2018[R]. 2018-6. ]
|
[9] |
|
[10] |
丁晓华, 王冕, 陈岩, 等. 电动汽车共享商业模式的发展[J]. 科技导报, 2016, 34(6):105-110.
[
|
[11] |
惠英, 孙芹路, 丁勐涛, 等. 汽车共享会员出行特征及效用分析——以杭州"车纷享"为例[J]. 上海城市规划, 2018(2):26-32.
[
|
[12] |
陈小鸿, 成嘉琪, 叶建红, 等. 共享汽车用户及出行时空特征分析[J]. 同济大学学报(自然科学版). 2018, 46(6):796-803,841.
[
|
[13] |
惠英, 孙芹路, 丁勐涛, 等. 汽车共享会员出行特征及效用分析——以杭州“车纷享”为例[J]. 上海城市规划, 2018(2):18-24.
[
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
张荣花, 关宏志, 赵磊, 朱海燕. 考虑汽车共享服务的出行方式选择影响因素研究[J]. 交通运输研究, 2020, 6(3):48-54.
[
|
[23] |
吴娇蓉, 王宇沁, 林子旸, 等. 综合体分时租赁小汽车对出行方式转移行为影响[J]. 同济大学学报(自然科学版), 2020, 48(1):60-67.
[
|
[24] |
|
[25] |
|
[26] |
|
[27] |
孙立山, 王顺超, 罗薇, 等. 基于用地分布特征的共享汽车需求估计模型[J]. 重庆交通大学学报(自然科学版), 2020, 39(5):1-6.
[
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
石晓冬. "四个中心"塑格局"多规合一"绘蓝图——《北京城市总体规划(2016—2035年)》解读[J]. 城市管理与科技. 2018, 20(3):14-19.
[
|
[37] |
周彪, 周溪召, 李彬. 基于上海市消费者的汽车共享选择分析[J]. 上海理工大学学报, 2014, 36(1):97-102.
[
|
[38] |
兰静, 诸大建. 可持续交通消费的接受和使用行为研究——基于上海市汽车共享的调查[J]. 中国人口·资源与环境, 2016, 26(11):98-105.
[
|
/
〈 | 〉 |