植被与不透水面的降温和增温效率分析方法
李 玉(1995— ),女,山西太原人,硕士生,主要研究方向为资源与环境遥感。E-mail: liyuedu@foxmail.com |
收稿日期: 2020-12-15
网络出版日期: 2021-11-25
基金资助
福建省公益类科研院所专项(2019R1102)
福建省自然科学基金项目(2018J01739)
版权
Cooling and Warming Efficiency of Vegetation and Impervious Surface
Received date: 2020-12-15
Online published: 2021-11-25
Supported by
Public Welfare Research Institutes of Fujian Province(2019R1102)
Natural Science Foundation of Fujian Province(2018J01739)
Copyright
基于遥感的城市热环境研究通常通过分析植被、不透水面和地表温度(Land Surface Temperature, LST )的关系来进行。虽然植被的降温作用和不透水面的增温作用已受到普遍认可,但缺少针对降温和增温效率的定量研究,本研究采用地表降温率(Land Surface Cooling Rate, LSCR)和地表增温率(Land Surface Warming Rate, LSWR)量化植被降温效率和不透水面增温效率并对2017年江苏省南京市城市热环境进行分析。以Landsat 8 OLI 4期遥感影像为数据源,利用线性光谱混合分析法(Linear Spectral Mixture Analysis,LSMA)获取亚像元植被覆盖度(Fractional Vegetation Coverage, FVC)、不透水面覆盖度(Impervious Surface Percentage, ISP)并利用高分Google影像进行精度验证。结合地表温度(Land Surface Temperature, LST)反演结果计算各季总体LSCR和LSWR,分析不同LST对总体LSCR和LSWR的影响。最后,将FVC和ISP分别按照阈值平均划分为4个区间,计算各区间的LSCR和LSWR,并在此基础上分析不同区间LSCR和LSWR的变化情况。研究结果表明: ① LST与整体LSCR、LSWR正相关,夏季植被降温效应和不透水面增温效应最强,LSCR和LSWR分别为5.6%和5.1%;② 夏季各区间LSCR与FVC正相关,FVC为75%~100%时LSCR达到最大值7.5%;各区间LSWR与ISP负相关,ISP为75%~100%时LSWR达到最小值2.4%;③ 当FVC为0~25%,ISP为75%~100%时,可以充分发挥植被的降温效应,抑制不透水面的增温效应,是最佳的植被和不透水面组合方案。本研究采用的LSCR和LSWR分析方法可以从抑制地表温度上升的角度选择最佳的FVC和ISP区间,未来可基于此横向对比不同城市,并结合纬度、地形、气候、树种等因素对LSCR和LSWR的影响,进一步探索LSCR和LSWR的影响因子和变化规律。
李玉 , 张友水 . 植被与不透水面的降温和增温效率分析方法[J]. 地球信息科学学报, 2021 , 23(9) : 1548 -1558 . DOI: 10.12082/dqxxkx.2021.200757
Remote sensing based studies of urban thermal environment usually analyze the relationship among vegetation, impervious surface, and Land Surface Temperature (LST). Although the cooling effects of vegetation and warming effects of impervious surface have been widely recognized, quantitative studies on cooling and warming efficiencies are lacking. In this study, Land Surface Cooling Rate (LSCR) and Land Surface Warming Rate (LSWR) were used to quantify the cooling efficiency of vegetation and the warming efficiency of impervious surface, respectively. Taking the central urban area of Nanjing, Jiangsu Province in 2017 as the research area, Landsat 8 OLI remote sensing data of four dates were selected as the data source. Firstly, Linear Spectral Mixture Analysis (LSMA) was used to obtain Fractional Vegetation Coverage (FVC) and Impervious Surface Percentage (ISP). High-resolution Google earth images were used for precision verification. Then, with LST inversion results, the LSCR and LSWR of each season were calculated, and the influence of different LSTs on the LSCR and LSWR was analyzed. Finally, using a thresholding method, FVC and ISP were divided into four intervals of 0%~25%, 25%~50%, 50%~75% and 75%~100%. The LSCR and LSWR of each interval were calculated. On this basis, the changes of LSCR and LSWR of different intervals were analyzed. The results show that: (1) LST is positively correlated with the overall LSCR and LSWR. The cooling effect of vegetation and the warming effect of impervious layer are the strongest in summer, with LSCR being 5.6% and LSWR being 5.1%. (2) In summer, LSCR in every interval is positively correlated with FVC. When FVC is 75%~100%, LSCR reaches the maximum value of 7.5%. In addition, LSWR in every interval is negatively correlated with ISP in summer. When ISP is 75%~100%, LSWR reaches the minimum value of 2.4%. (3) In the future planning, the cooling effect of vegetation can best inhibit the warming effect of impervious surface when FVC is 0%~25% while ISP is 75%~100%, which is the best areal combination of vegetation and impermeable surface. The LSCR and LSWR analysis methods adopted in this study can select the best FVC and ISP intervals from the perspective of preventing the rise of surface temperature. Based on this, different cities can be compared with each other in the future. Considering the impacts of latitude, topography, climate, tree species, etc. on LSCR and LSWR, we can further explore the influencing factors and changing rules of LSCR and LSWR.
表1 2017年3月南京市植被和不透水面提取精度验证Tab. 1 Accuracy verification of vegetation and impervious surface extraction in Nanjing in Mar. 2017 |
测试区 | Landsat OLI 提取结果/km2 | Google 提取结果/km2 | 平均差异/%([Landsat 8 OLI-Google]/Google) | |||
---|---|---|---|---|---|---|
植被面积 | ISA | 植被面积 | ISA | 植被面积 | ISA | |
1 | 1.588 | 1.001 | 1.647 | 0.993 | -3.6 | 0.8 |
2 | 1.123 | 1.096 | 1.166 | 1.147 | -3.7 | -4.4 |
3 | 0.999 | 1.225 | 1.094 | 1.274 | -8.7 | -3.8 |
4 | 0.799 | 1.734 | 0.856 | 1.738 | -6.7 | -0.2 |
5 | 0.627 | 2.142 | 0.650 | 2.105 | -3.5 | 1.8 |
表2 2017年南京市各季不同FVC区间下的地表降温速率Tab. 2 Land Surface Cooling Rate (LSCR) under different Fractional Vegetation Coverage (FVC) intervals in Nanjing (2017) |
季节 | LSCR/% | ||||
---|---|---|---|---|---|
0~25% FVC | 25%~50% FVC | 50%~75% FVC | 75%~100% FVC | 变化幅度 (max - min) | |
春(3月) | 4.7 | 2.6 | 2.2 | -0.4 | 5.1 |
夏(7月) | 3.7 | 5.3 | 5.5 | 7.5 | 3.8 |
秋(10月) | 3.7 | 3.7 | 2.4 | 2.2 | 1.5 |
冬(12月) | 3.6 | 2.9 | 0.4 | -1.2 | 4.8 |
表3 2017年南京市各季不同ISP区间下的地表增温速率Tab. 3 Land surface warming rate (LSWR) under different impervious surface percentage (ISP) thresholds in Nanjing (2017) |
季节 | LSWR/% | ||||
---|---|---|---|---|---|
0~25% ISP | 25%~50% ISP | 50%~75% ISP | 75%~100% ISP | 变化幅度 (max - min) | |
春(3月) | 1.7 | 1.3 | 1.8 | -0.1 | 1.9 |
夏(7月) | 8.2 | 5.4 | 5.1 | 2.4 | 5.8 |
秋(10月) | 3.2 | 2.6 | 2.3 | 1.7 | 1.5 |
冬(12月) | 0.8 | 0.9 | 1.1 | -0.1 | 1.2 |
[1] |
|
[2] |
|
[3] |
彭少麟, 周凯, 叶有华, 等. 城市热岛效应研究进展[J]. 生态环境, 2005, 14(4):574-579.
[
|
[4] |
刘建军, 郑有飞, 吴荣军. 热浪灾害对人体健康的影响及其方法研究[J]. 自然灾害学报, 2008, 17(1):151-156.
[
|
[5] |
黄晓军, 王博, 刘萌萌, 等. 中国城市高温特征及社会脆弱性评价[J]. 地理研究, 2020, 39(7):1534-1547.
[
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
万继康. 基于城市地表温度与归一化植被指数对北京市建成区热环境分析[J]. 测绘与空间地理信息, 2020, 43(1):72-75.
[
|
[16] |
历华, 柳钦火, 邹杰. 基于MODIS数据的长株潭地区NDBI和NDVI与地表温度的关系研究[J]. 地理科学, 2009, 29(2):262-267.
[
|
[17] |
|
[18] |
杨山. 发达地区城乡聚落形态的信息提取与分形研究——以无锡市为例[J]. 地理学报, 2000, 55(6):671-678.
[
|
[19] |
查勇, 倪绍祥, 杨山. 一种利用TM图像自动提取城镇用地信息的有效方法[J]. 遥感学报, 2003, 7(1):37-40,82.
[
|
[20] |
|
[21] |
王佳, 钱雨果, 韩立建, 等. 基于GWR模型的土地覆盖与地表温度的关系——以京津唐城市群为例[J]. 应用生态学报, 2016, 27(7):2128-2136.
[
|
[22] |
|
[23] |
|
[24] |
|
[25] |
邱新法, 顾丽华, 曾燕, 等. 南京城市热岛效应研究[J]. 气候与环境研究, 2008, 13(6):807-814.
[
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
/
〈 | 〉 |