义务教育就近入学优化建模研究
王玉璟(1980— ),女,河南新乡人,博士生,从事空间优化研究。E-mail: yjwang@henu.edu.cn |
收稿日期: 2020-12-02
网络出版日期: 2021-11-25
基金资助
国家自然科学基金项目(41871307)
版权
Optimization Modeling for Nearby School Enrollment of Compulsory Education
Received date: 2020-12-02
Online published: 2021-11-25
Supported by
National Natural Science Foundation of China(41871307)
Copyright
就近入学是国内外义务教育的基本共识,也是我国义务教育制度的重要组成部分。为满足就近入学需求,引入优化建模方法进行义务教育空间布局规划。首先,定义了4种就近入学场景:严格就近入学、学额限制的相对就近入学、学区连续的就近入学,以及学校布局调整下的就近入学,并构造了相关的优化模型,讨论了每个模型的优势与局限。其次,以河南省某县516个居民区和31所初级中学为例,尝试进行多个实验情景下的最优就近入学安排,并进行比较分析。案例研究发现:① 基于现有学校的布局,严格就近入学缺乏可行性;② 打破乡镇行政边界招生,能够显著地降低学生入学距离;③ 考虑学校学额限制后,学生入学距离比严格就近入学增加40.75%;④ 空间连续的学区划分方便义务教育管理,对学生入学距离影响不明显;⑤ 通过模拟少数学校扩建、新建或撤销,学校布局明显改善,学生入学距离比学区连续入学将下降31.32%。整体上,本文将空间指派、服务区划分、设施选址等优化模型用于义务教育就近入学分析,能够为基层义务教育管理提供规划决策建议,也能为其他公共服务设施规划提供参考。
王玉璟 , 孔云峰 . 义务教育就近入学优化建模研究[J]. 地球信息科学学报, 2021 , 23(9) : 1608 -1616 . DOI: 10.12082/dqxxkx.2021.200728
Nearby school enrollment is one of the fundamental principles of the compulsory education in China. In this paper, the spatial optimization methods have been applied to local education planning in order to comply with the educational policy on nearby school enrollment. Four planning scenarios are defined: the nearest school enrollment, the optimal nearby school enrollment constrained by the school quotas, the optimal nearby school enrollment constrained by the school quotas and contiguous service areas, and the optimal nearby school enrollment by adjusting school locations. The Mixed Integer Linear Programming (MILP) models for the four scenarios were formulated. The optimization models were tested on a real instance in a county of Henan Province, China. There are 516 residential areas and 31 junior middle schools in the study region. All the instance models were successfully solved by the IBM ILOG CPLEX Optimizer. The case study shows that: (1) It is not feasible to assign all the students to their nearest schools because some schools will be severely overloaded. (2) The total travel distance of students can be significantly reduced by assigning some students to the schools outside their township boundary. (3) Compared with the nearest school enrollment, the total travel distance of students will increase by 40.75% when the school quotas are considered. (4) The design of contiguous service areas of schools is convenient for managing school enrollment, which has no obvious influence on the total travel distance of students. (5) The school service will be significantly improved by adjusting locations of three schools and expanding quotas of two schools in the study area, which will reduce the total travel distance of students by 31.32%. The case study indicates that the nearby school enrollment of compulsory education could be spatially designed by solving the mathematical models such as the generalized assignment problem, the facility service area problem, and the capacitated facility location problem. Both the generalized assignment problem and the facility service area problem aim to minimize the travel distance of students to existing schools, while the capacitated facility location problem is capable of searching better school locations and thus reducing the travel distance of students.
表1 实验情景主要特征Tab. 1 Characteristics of the experimental scenarios |
实验情景 | 应用区域 | 优化模型 | 主要特征 |
---|---|---|---|
1A | 乡镇域 | 模型1 | 严格就近入学 |
1B | 县域 | ||
2A | 乡镇域 | 模型2 | 学额限制+就近入学 |
2B | 县域 | ||
3A | 乡镇域 | 模型3 | 学区连续+学额限制+就近入学 |
3B | 县域 | ||
4B | 县域 | 模型4 | 调整布局+学区连续+学额限制+就近入学 |
表2 6种实验情景模型计算结果统计Tab. 2 Modelling results for 6 experimental scenarios |
应用区域 | 实验情景 | 优化模型 | 学生入学总距离/km | 超额/人 | 学区连续 | 计算时间/s |
---|---|---|---|---|---|---|
乡镇域 | 1A | 模型1 | 34 726.86 | 2339 | 否 | 0.07 |
2A | 模型2 | 34 730.91 | 2334 | 否 | 1.71 | |
3A | 模型3 | 35 055.92 | 2044 | 是 | 1.92 | |
县域 | 1B | 模型1 | 31 561.06 | 2524 | 否 | 0.02 |
2B | 模型2 | 44 421.41 | 0 | 否 | 24.10 | |
3B | 模型3 | 44 475.81 | 0 | 是 | 7201.89 |
表3 学校布局调整计算结果统计Tab. 3 Modeling results for school location planning |
应用区域 | 实验情景 | 数学模型 | 学生入学总距离/km | 超额/人 | 学区连续 | 计算时间/s |
---|---|---|---|---|---|---|
县域 | 4B | 模型4 | 30 547.80 | 0 | 是 | 306.03 |
[1] |
《中国农村教育发展报告2019》发布[N]. 中国民族报, 2019-02-19(003).
[ China rural education development report 2019 was released[N]. China Nationalities Daily, 2019-02-19(003). ]
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
孔云峰, 王震. 县市级义务教育学校区位配置优化设计与实验[J]. 地球信息科学学报, 2012, 14(3):299-304.
[
|
[7] |
彭永明, 王铮. 农村中小学选址的空间运筹[J]. 地理学报, 2013, 68(10):1411-1417.
[
|
[8] |
孔云峰, 王新刚, 王震. 使用MIP优化器求解p-median问题——以学校选址为例[J]. 河南大学学报(自然科学版), 2014, 44(6):725-730.
[
|
[9] |
戴特奇, 王梁, 张宇超, 等. 农村学校撤并后规模约束对学校优化布局的影响——以北京延庆区为例[J]. 地理科学进展, 2016, 35(11):1352-1359.
[
|
[10] |
刘科伟, 史茹, 康智渊. 基于供需关系的城市边缘区基础教育设施布局研究——以西安市长安区韦曲街道为例[J]. 地域研究与开发, 2018, 37(5):83-88.
[
|
[11] |
赵韶雅, 戴特奇, 张超, 等. 农村地区学校布局优化与土地整理——以新仁苗族乡为例[J]. 小城镇建设, 2019, 37(4):32-38.
[
|
[12] |
戴军, 苑惠丽, 马颖忆. 西部乡村基础教育设施“场势效应”评价与空间优化——以海东市蒲台乡为例[J]. 农业现代化研究, 2019, 40(4):692-701.
[
|
[13] |
陈玉龙, 赖志柱, 王铮. 基于交通网络的乡村中小学优化布局[J]. 地球信息科学学报, 2020, 22(5):1120-1132.
[
|
[14] |
孔云峰, 李小建, 张雪峰. 农村中小学布局调整之空间可达性分析——以河南省巩义市初级中学为例[J]. 遥感学报, 2008, 12(5):800-809.
[
|
[15] |
孔云峰, 吕建平. 就近入学空间模型分析——以河南省巩义市初级中学为例[J]. 地理与地理信息科学, 2011, 27(5):87-90,98.
[
|
[16] |
张腾, 常军, 孙艺璇. 济南市中小学教育资源空间布局与可达性分析[J]. 测绘科学技术学报, 2019, 36(4):418-423.
[
|
[17] |
戴特奇, 廖聪, 胡科, 等. 公平导向的学校分配空间优化——以北京石景山区为例[J]. 地理学报, 2017, 72(8):1476-1485.
[
|
[18] |
戴特奇, 赵韶雅, 廖聪. 概率分布相似最大化的“就近—随机”入学机会公平优化——以北京市西城区为例[J]. 经济地理, 2019, 39(11):18-24.
[
|
[19] |
孔云峰. 利用GIS与线性规划学校最优学区划分[J]. 武汉大学学报·信息科学版, 2012, 37(5):513-515.
[
|
[20] |
孔云峰, 朱艳芳, 王玉璟. 学校分区问题混合元启发算法研究[J]. 地理学报, 2017, 72(2):256-268.
[
|
[21] |
孔云峰, 朱艳芳, 王玉璟. 整型规划求解空间连续约束学校分区问题[J]. 河南大学学报(自然科学版), 2017, 47(5):514-521.
[
|
[22] |
|
[23] |
|
[24] |
|
[25] |
开封市统计局. 开封统计年鉴-2019[EB/OL]. http://tjj.kaifeng.gov.cn/ym/xxyd/lhfw/2020/0214/1566.html 2020-02-14.
[Kaifeng Bureau of Statistics. Kaifeng statistical yearbook-2019[EB/OL]. http://tjj.kaifeng.gov.cn/ym/xxyd/lhfw/2020/0214/1566.html 2020-02-14.]
|
/
〈 | 〉 |