基于百度街景的SVF计算及其在城市热岛研究中的应用
冯叶涵(1997— ),女,重庆人,硕士生,主要从事城市气候、遥感研究。E-mail: 51193901040@stu.ecnu.edu.cn |
收稿日期: 2020-12-09
要求修回日期: 2021-03-28
网络出版日期: 2021-09-26
基金资助
国家自然科学基金项目(41805089)
上海市自然科学基金资助项目(18ZR1410700)
上海市城市更新及其空间优化技术重点实验室开放课题资助(201830207)
华东师范大学地理信息科学教育部重点实验室主任基金(KLGIS2019C01)
河北省省级科技计划资助(18964201H)
版权
Sky View Factor Calculation based on Baidu Street View Images and Its Application in Urban Heat Island Study
Received date: 2020-12-09
Request revised date: 2021-03-28
Online published: 2021-09-26
Supported by
National Natural Science Foundation of China, No(41805089)
Natural Science Foundation of Shanghai, No(18ZR1410700)
Open Projects Fund of Key Laboratory of Shanghai Urban Renewal and Spatial Optimization Technology, No(201830207)
Director's Fund of Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, No(KLGIS2019C01)
S&T Program of Hebei, No(18964201H)
Copyright
SVF(Sky View Factor)是描述城市辐射和城市热环境的有效指标之一,是研究城市热岛的重要几何参数,如何快速准确地计算大规模的SVF对城市形态和城市气候研究具有重要意义。已有研究发现,SVF与热岛强度具有强烈关系,但以往研究存在争论和局限性。本研究采用百度全景静态图,基于深度学习,使用Deeplabv3+模型对天空范围进行探测,提出一种SVF自动计算方法,并用该方法计算上海市中心城区的SVF分布。本研究引入局地气候分区(Local Climate Zones, LCZ),将大规模、精确的SVF结合每个地块具体的土地利用和建筑情况进一步用于SVF与热岛强度的关系研究。实验结果表明,在不同场景下,Deeplabv3+模型都能对天空范围进行有效探测(MIOU=91.64%);本文方法计算的SVF与鱼眼照片计算的SVF具有令人满意的一致性(R2=0.8869);在不同区域,SVF与热岛强度的关系不同,对于LCZ5开敞中层建筑,最高相关系数为0.68,对于LCZ1紧凑高层建筑,最高相关系数为-0.79。本文SVF计算方法在上海市中心城区的成功应用,验证了在中国高密度和复杂的城市环境中使用街景图像计算大规模SVF的可行性,此外本文基于区域化研究思想进一步研究了SVF与城市热岛的关系,弥补了以往此类研究的不足。
冯叶涵 , 陈亮 , 贺晓冬 . 基于百度街景的SVF计算及其在城市热岛研究中的应用[J]. 地球信息科学学报, 2021 , 23(11) : 1998 -2012 . DOI: 10.12082/dqxxkx.2021.200747
The Sky View Factor (SVF) is one of the most important indicators to characterize urban radiation fluxes and urban thermal environment. Therefore, it is a key morphological parameter to study the Urban Heat Island (UHI) effect. Studies have shown that SVF has a strong relationship with UHI intensity. Nevertheless, the relationships found can be contradictory. This is primarily due to the fact that the cases studied are often in different regions with different climatic conditions. In addition, the influences of trees are sometimes ignored due to the lack of vegetation data or the limitation of calculating methods. How to calculate SVF quickly and accurately is important to urban climate research. SVF is typically calculated by four types of methods: fisheye photo methods, 3D GIS methods, GPS methods, and street view image methods. Compared with the other types of methods, calculating SVF using street view images has many advantages, such as widely available data, low cost, high efficiency, and the ability to consider the influences of trees and other obstacles. On the one hand, street view images provide the possibility for fast and accurate calculation of SVF in large-scale areas. On the other hand, the street view image method is still at its developing stage and more work needs to be done to verify its application in various urban environments. In this study, we proposed an automatic SVF calculation method using street view images and deep learning algorithms, and then applied the method to the UHI study in the city center of Shanghai. Baidu static panoramas and Deeplabv3+ were used to detect sky range while MATLAB code was written to calculate SVF. A Landsat-8 OLI / TIRS image was also used to retrieve land surface temperature at street level in the study area. Based on the Local Climate Zones (LCZ) scheme, we combined large-scale SVF value with the land use and building morphology to examine the relationship between SVF and UHI intensity. The results showed that Deeplabv3+ can detect the sky and non-sky range effectively in different scenarios (MIOU=91.64%). The SVF calculated using the proposed method was in good agreement with that calculated using fish-eye photos (R2=0.8869). The LCZ scheme provides new insights for the relationship between SVF and UHI. For LCZ5 and LCZ1, the highest correlation coefficients were 0.68 and -0.79, respectively. The proposed method was shown to be applicable in high-density and complex urban environments. In addition, the calculation of large-scale continuous SVF provides the possibility for zonal understandings of the UHI effect based on the LCZ scheme.
Tab. 1 Types, examples and characteristics of LCZ[32] |
建成景观类型 | 样例 | 类型特征 | 建成景观类型 | 样例 | 类型特征 |
---|---|---|---|---|---|
LCZ1紧凑高层建筑 | 10层以上的密集高层建筑,少或无树木,地表覆盖多为硬质铺装,建筑材料为混凝土、钢材、石头和玻璃 | LCZ6开敞低层建筑 | 1~3层开阔分布的低层建筑,地表覆盖多为可透水地面(低矮植被、树木),建筑材料为混凝土、钢材、石头和玻璃 | ||
LCZ2紧凑中层建筑 | 3~9层的密集中层建筑,少或无树木,地表覆盖多为硬质铺装,建筑材料为砖石、瓦片和混凝土 | LCZ7轻质低层建筑 | 密集混合的单层建筑,几乎无树木,地表覆盖为夯实的土质路面,建筑材料为轻质建筑材质(木头、茅草和波纹状板材) | ||
LCZ3紧凑低层建筑 | 1~3层的密集低层建筑,少或无树木,地表覆盖多为硬质铺装,建筑材料为石头、砖、瓦片和混凝土 | LCZ8大型低层建筑 | 1~3层开阔分布的低层大型建筑,几乎无树木,地表覆盖为不透水表面,建筑材料为钢材、混凝土、金属和石头 | ||
LCZ4开敞高层建筑 | 10层以上的低密度高层建筑,地表覆盖多为可透水地面(低矮植被、树木),建筑材料为混凝土、钢材、石头和玻璃 | LCZ9零散建筑 | 自然环境中零散的中、小型建筑,地表覆盖为大量可透水面(低矮的植被、树木) | ||
LCZ5开敞中层建筑 | 3~9层的低密度中层建筑,地表覆盖多为可透水地面(低矮植被、树木),建筑材料为混凝土、钢材、石头和玻璃 | LCZ10工业厂房 | 中低层工业建筑,几乎无树木,地表覆盖为不透水表面或夯实的土质路面,建筑材质为金属、钢材和混凝土 |
表2 数据信息Tab. 2 Information of data |
数据名称 | 数据来源 | 数据时间 | 数据说明 |
---|---|---|---|
百度全景静态图 | 百度地图开放平台[39] (http://lbsyun.baidu.com/index.php?title=viewstatic) | 2017年9月 | 水平视场角360°,垂直视场角180°,图像大小为600 px ×300 px,研究区内有10 438张图像用于后续处理和计算 |
道路网 | 百度地图开放平台[39] (http://lbsyun.baidu.com/index.php?title=webapi/roadinfo) | 2019年11月 | 上海市中心城区的市区一级道路网,百度全景静态图采样点沿道路网以50 m间隔分布 |
鱼眼照片 | 鱼眼镜头实地拍摄 | 2020年6月 | 使用装有鱼眼镜头(Nikon Fisheye Converter FC-E8 0.21)的相机(Nikon coolpix 4500)拍摄,鱼眼相机固定在离地2 m,用于本文SVF计算方法的验证 |
Landsat-8 OLI/TIRS影像 | 地理空间数据云[40] (http://www.gscloud.cn) | 2017年8月 | 采集时间为2017年8月25日02:24:49,云量0.4,行列号38/118,中心经纬度121.939 35,31.742 15,用于地表温度的反演 |
Tab. 3 SVF calculation results in different scenarios |
场景 | 原始图像 | 天空范围探测结果 | 投影转换 | SVF |
---|---|---|---|---|
开阔无云 | 0.347 | |||
开阔多云 | 0.606 | |||
蓝天白云 | 0.638 | |||
大树冠遮挡 | 0.395 | |||
桥梁遮挡 | 0.310 | |||
过度曝光 | 0.556 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
张海龙, 祝善友, 王明江, 等. 基于3D建筑物数据的天空开阔度估算及其城市热岛应用研究——以Adelaide为例[J]. 遥感技术与应用, 2015, 30(5):899-907.
[
|
[22] |
王成刚, 魏夏潞, 严家德, 等. 气象探测环境等级评估方法及应用[J]. 应用气象学报, 2019, 30(1):117-128.
[
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
樊智宇, 詹庆明, 刘慧民, 等. 武汉市夏季城市热岛与不透水面增温强度时空分布[J]. 地球信息科学学报, 2019, 21(2):226-235.
[
|
[32] |
|
[33] |
林中立, 徐涵秋. 基于LCZ的城市热岛强度研究[J]. 地球信息科学学报, 2017, 19(5):713-722.
[
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
百度地图开放平台[EB/OL].(http://lbsyun.baidu.com).
[Baidu map open platform[EB/OL].(http://lbsyun.baidu.com).]
|
[40] |
地理空间数据云[EB/OL].(http://www.gscloud.cn)
[Geospatial data cloud[EB/OL].(http://www.gscloud.cn).]
|
[41] |
|
[42] |
张好, 徐涵秋, 李乐, 等. 成都市热岛效应与城市空间发展关系分析[J]. 地球信息科学学报, 2014, 16(1):70-78.
[
|
/
〈 | 〉 |