结合ASIFT和归一化的抗仿射变换遥感影像盲水印算法
秦如贞(1997— ),女,山西吕梁人,硕士生,主要从事遥感影像版权保护研究。E-mail: 1043020927@qq.com |
收稿日期: 2021-01-15
要求修回日期: 2021-04-10
网络出版日期: 2021-12-25
基金资助
甘肃高等学校产业支撑引导项目项目(2019C-04)
国家自然科学基金项目(41761080)
兰州交通大学优秀平台支持(201806)
版权
A Blind Watermarking Algorithm for Remote Sensing Image based on Anti-Affine Transforma-tion Combining ASIFT and Normalization
Received date: 2021-01-15
Request revised date: 2021-04-10
Online published: 2021-12-25
Supported by
Industrial Support and Guidance Projects of Colleges and Universities in Gansu(2019C-04)
National Natural Science Foundation of China(41761080)
Lanzhou Jiaotong University Excellent Platform(201806)
Copyright
针对遥感影像使用过程中,含水印影像经过仿射变换后水印与影像的同步性被破坏,导致水印无法正常检测的问题,本文提出了一种适用于遥感影像的抗仿射变换盲水印算法。首先通过ASIFT算法提取影像具有仿射不变性的特征点,根据特征尺度的大小与特征点间的欧式距离筛选适量特征点,构造对应的正方形特征区域;然后通过计算特征区域的仿射不变矩得出归一化变换函数的参数,对特征区域进行归一化处理,并以归一化特征区域的不变质心为中心提取子区域作为水印嵌入区域,对该区域进行二级离散小波变换,得到水印嵌入区域的低频信息;运用量化嵌入规则将水印嵌入到低频信息中,依次进行低频信息逆小波变换,水印嵌入前后特征区域差值图像反归一化,最后将反归一化差值图像叠加在原始影像特征区域上,完成水印的嵌入。实验选用了3000像素×3000像素的高分二号遥感影像作为载体影像,含版权信息的二值图像作为水印,实验表明:含水印的遥感影像经过旋转、平移、缩放在内的仿射变换后,仍能准确提取水印信息;算法可有效抵抗加噪、滤波、裁剪等常规水印攻击,攻击后影像提取的水印与原水印相关系数均高于0.9;水印具有良好不可感知性;在水印提取时无需原始遥感影像,属于盲水印算法。
秦如贞 , 张黎明 , 伍庭晨 , 李玉 , 王昊 . 结合ASIFT和归一化的抗仿射变换遥感影像盲水印算法[J]. 地球信息科学学报, 2021 , 23(10) : 1882 -1891 . DOI: 10.12082/dqxxkx.2021.210021
In the process of using remote sensing images, the synchronization between watermark and remote sensing image is disrupted after affine transformation is performed on the watermarked image. Although the watermark is not removed after affine transformation, the size and relative position of the image are changed, which leads to the problem that watermark cannot be detected correctly. It is significant to improve the robustness of digital watermarking. This paper proposes a blind watermarking algorithm for remote sensing image, which can effectively resist affine transformation. Firstly, the affine invariant feature points of the image are extracted by ASIFT algorithm. The stable, evenly distributed, appropriate feature points are selected according to the size of the feature scale and the Euclidean distance between the feature points to construct the corresponding square feature regions. Secondly, take a feature region as an example, the affine invariant moments of the feature region are calculated to normalize the feature region. With the invariant centroid of the normalized feature region as the center, the sub region is extracted as watermark embedding region. The low-frequency information of the watermark embedding region is obtained by two-level wavelet transform. The watermark is embedded into the low-frequency information using the quantization embedding rule to complete the watermark embedding. Finally, inverse wavelet transform of low-frequency information is performed. The difference image of the characteristic region before and after embedding is denormalized. The denormalized difference image is superimposed on the original image characteristic region to complete the watermark embedding. In this paper, a GF-2 remote sensing image of 3000 × 3000 pixels was used as the carrier image, while the binary image with copyright information was used as the watermark. This paper measured the invisibility of the watermark by calculating the magnitude of the peak signal-to-noise ratio. In the robustness testing experiments, the watermarked image was subjected to affine transformation, noise adding attack, and filtering attack. Then, the algorithm of this paper was used for watermark extraction. The watermark with the highest normalized correlation value extracted was selected for robustness evaluation. The experiment results show that, after affine transformation, including rotation, translation, and scaling, the watermark information was accurately extracted from the watermarked remote sensing image through the algorithm. The algorithm is robust to noise, filtering, cropping, and other conventional watermarking attacks. The watermark has good imperceptibility. ASIFT is a blind watermarking algorithm. The watermark detection process does not need the original remote sensing image. Our algorithm has strong practicability.
表2 仿射变换后提取水印的结果Tab. 2 Results of extracting watermark after affine transformation |
表3 常规攻击后提取水印的结果Tab. 3 Results of extracting watermark after conventional attack |
[1] |
|
[2] |
|
[3] |
朱长青. 地理数据数字水印和加密控制技术研究进展[J]. 测绘学报, 2017, 46(10):1609-1619.
[
|
[4] |
|
[5] |
|
[6] |
薛白, 付钰莹, 崔成玲, 等. 多重约束条件下的不同遥感影像匹配方法[J]. 国土资源遥感, 2020, 32(3):49-54.
[
|
[7] |
|
[8] |
|
[9] |
罗茂, 陈建华. 一种基于仿射矩阵校正的抗几何攻击水印算法[J]. 云南大学学报(自然科学版), 2019, 41(5):900-907.
[
|
[10] |
孙刚, 谢俊元. 一种基于Fourier-Mellin变换的数字水印的研究[J]. 计算机工程, 2004, 30(9):152-153,165.
[
|
[11] |
|
[12] |
牛盼盼, 杨红颖, 邬俊, 等. 基于归一化图像重要区域的数字水印方法[J]. 中国图象图形学报, 2007, 12(10):1774-1777.
[
|
[13] |
|
[14] |
|
[15] |
邓成, 李洁, 高新波. 基于仿射协变区域的抗几何攻击图像水印算法[J]. 自动化学报, 2010, 36(2):221-228.
[
|
[16] |
王潇, 任娜, 朱长青, 等. 基于QR码和量化DCT的遥感影像数字水印算法[J]. 地理与地理信息科学, 2017, 33(6):19-24.
[
|
[17] |
周琳, 张天骐, 冯嘉欣, 等. Blob-Harris特征区域结合CT-SVD的鲁棒图像水印算法[J]. 信号处理, 2020, 36(4):520-530.
[
|
[18] |
任娜, 朱长青, 王志伟. 基于映射机制的遥感影像盲水印算法[J]. 测绘学报, 2011, 40(5):623-627.
[
|
[19] |
|
[20] |
|
[21] |
邰能建, 吴德伟, 戚君宜. 基于改进SIFT的高鲁棒性特征点提取方法[J]. 航空学报, 2012, 33(12):2313-2321.
[
|
[22] |
陈灿, 胡峰松, 周海燕. 基于尺度不变特征点的抗几何攻击水印算法[J]. 计算机工程, 2007, 33(11):157-159.
[
|
[23] |
|
[24] |
李莹莹, 张毅锋, 程旭, 等. 基于DWT最优多子图和SIFT几何校正的鲁棒水印算法[J]. 计算机应用研究, 2019, 36(6):1819-1823,1827.
[
|
/
〈 | 〉 |