实时路况支持下的南京市消防救援覆盖率时空模式分析
祝开心(2000— ),男,广西灵山人,本科生,主要从事空间数据分析研究。E-mail: zhukaixin@hhu.edu.cn |
收稿日期: 2021-03-14
要求修回日期: 2021-05-21
网络出版日期: 2022-02-25
基金资助
国家重点研发计划项目(2019YFC1510601)
国家自然科学基金(42071315)
中央高校基本科研业务费专项资金资助(B210202008)
版权
Spatiotemporal Pattern Analysis of Fire Service Coverage Rate in Nanjing from Real-time Road Conditions
Received date: 2021-03-14
Request revised date: 2021-05-21
Online published: 2022-02-25
Supported by
National Key Research and Development Program of China(2019YFC1510601)
National Natural Science Foundation of China(42071315)
Fundamental Research Funds for the Central Universities(B210202008)
Copyright
快速城镇化导致我国城市消防应急服务基础设施与城市发展不同步的问题日益凸显,城市消防救援覆盖率评估是提升消防服务质量与优化消防资源配置的重要手段。本文提出一种基于实时路况的城市消防救援覆盖率评估模型,通过考虑消防站管辖区域的空间限制,在2020年9月连续三周时间内利用高德地图API获取消防站到达历史火灾事件的实时出行救援时间,对南京市消防救援覆盖率的时空模式进行分析与挖掘。结果显示:① 南京城市火灾密集区域(简称火灾密集区)消防站的平均出行救援时间约10 min,非火灾密集区约16 min,均比国家规定的5 min到达时间标准明显要长,导致南京市消防站在5 min到达标准下的覆盖率仅为8.2%;② 由于南京火灾密集区消防站的平均行车救援距离仅为非火灾密集区的37%,导致火灾密集区火灾事件等待救援时间明显低于非火灾密集区,尤其火灾密集区西南部、东北部及部分消防站周边火灾事件等待救援时间相对较短,但南京全区火灾事件等待救援时间在5 min以内的比例不足7%,且等待救援时间在5~10 min之间的短距离火灾事件受早晚交通出行高峰期交通拥堵影响最大;③ 南京市消防站救援覆盖率受早晚交通出行高峰影响呈现早晚交通出行高峰期明显低于其他时段的“W”形变化模式,火灾密集区消防站在5 min到达标准下的救援覆盖率从非交通出行高峰期的11.5%降低到交通出行高峰期的8.4%,而非火灾密集区从6.1%降低到5%,火灾密集区东南部石门坎与东山交界区域和北部汉中门与迈皋桥周边区域早晚交通出行高峰时段等待救援时间超过15 min的火灾事件比非交通出行高峰时段明显增多;④ 在5 min到达标准下,南京市消防站救援覆盖率“W”形模式波动最小,10 min到达标准下的平均覆盖率为43.5%且波动最明显,15 min到达标准下的平均覆盖率达到75%。最后根据分析结果给出了南京市消防未来建设发展意见。
祝开心 , 张凤焰 , 李余郁 , 陈跃红 . 实时路况支持下的南京市消防救援覆盖率时空模式分析[J]. 地球信息科学学报, 2021 , 23(12) : 2201 -2214 . DOI: 10.12082/dqxxkx.2021.210129
The rapid urbanization in China results in the problem that urban fire facilities fail to keep pace with urban development. Assessing urban fire service coverage rate plays an important role in optimizing urban fire resource allocation. This paper aimed to propose an assessment for the fire service coverage rate using real-time road conditions to explore the spatiotemporal pattern of urban fire service coverage rate. By consideration of the coverage area of fire stations, the real-time rescue time of fire stations arriving at historical fire incidents was obtained by using the AutoNavi Maps API for three consecutive weeks in September 2020. The real-time travel time was then used to calculate the fire service coverage rate for investigating the spatiotemporal pattern of fire service coverage rate in Nanjing, China. Results show that: (1) The average travel time of fire stations was 10 minutes in urban fire-intensive area and 16 minutes in non-fire-intensive area. The average travel time for both areas was significantly longer than the national standard arrival time of five minutes. Thus, the fire service coverage rate of fire stations that met the national standard in Nanjing was only 8.2%; (2) As the average travel distance for fire stations in fire-intensive area of Nanjing was 37% of that in non-fire-intensive area, the waiting time for fire incidents rescue in fire-intensive area was significantly shorter than that in non-fire-intensive area, especially in the southwest and northeast of fire-intensive area and around some fire stations. The proportion of fire incidents with waiting time for rescue within five minutes in Nanjing was less than 7%, and fire incidents with waiting time for rescue between five to ten minutes were mostly affected by traffic congestion during morning and evening rush hours; (3) The fire service coverage rate in Nanjing was affected by the morning and evening rush hours which presented a "W" shaped pattern, resulting in lower fire service coverage rate in morning and evening rush hours than that in other time. The fire service coverage rate in fire-intensive area complying with the five minute standard arrival time decreased from 11.5% during the non-rush hours to 8.4% during the rush hours, and decreased from 6.1% to 5% in non-fire-intensive area. In the intersection area of Shimenkan and Dongshan fire stations and the surrounding area of Hanzhongmen and Maigaoqiao fire stations, the number of fire incidents with waiting time for rescue over 15 minutes in morning and evening rush hours was larger than that in other time; (4) The fire service coverage rate with the "W" shaped pattern had the smallest fluctuation with the use of 5 minutes as the standard arrival time, and the largest fluctuation occurred with the use of 10 minutes as the standard arrival time. The fire service coverage rate reached 43.5% using 10 minutes as the standard and 75% using 15 minutes as the standard arrival time. Finally, based on the analysis, suggestions were made for the future construction and planning of Nanjing fire facilities.
[1] |
杨翠迎. 城市化进程中公共服务资源配置面临的挑战与对策[J]. 甘肃社会科学, 2014(4):9-13.
[
|
[2] |
|
[3] |
李燕萍, 虞虎, 王昊, 等. 面向大数据时代的城市规划研究响应与应对方略[J]. 城市发展研究, 2017, 24(10):1-10.
[
|
[4] |
吴志峰, 柴彦威, 党安荣, 等. 地理学碰上“大数据”:热反应与冷思考[J]. 地理研究, 2015, 34(12):2207-2221.
[
|
[5] |
宋波, 刘文晓, 孙亚光. 基于大数据+GIS技术的消防站布局规划——以洛阳市涧西区为例[J]. 中国应急救援, 2020(3):57-62.
[
|
[6] |
|
[7] |
|
[8] |
胡强. 山地城市避难场所可达性研究[D]. 重庆:重庆大学, 2010.
[
|
[9] |
|
[10] |
熊雪晨, 白鸽, 金超, 等. 基于最近距离法的医疗服务地理可及性可视化表达方法及实证研究[J]. 中国卫生资源, 2016, 19(4):270-274.
[
|
[11] |
|
[12] |
|
[13] |
傅俐, 王勇, 曾彪, 等. 基于改进两步移动搜索法的北碚区医疗设施空间可达性分析[J]. 地球信息科学学报, 2019, 21(10):1565-1575.
[
|
[14] |
|
[15] |
|
[16] |
陶卓霖, 程杨, 戴特奇, 等. 公共服务设施布局优化模型研究进展与展望[J]. 城市规划, 2019, 43(8):60-68,88.
[
|
[17] |
刘莉, 陈晨. 一种GIS与集合覆盖法的消防区优化布局[J]. 测绘科学, 2018, 43(9):46-51.
[
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
詹玮璇, 范威威, 刘明宇. 大数据环境下城市消防站救援覆盖能力评估[J]. 消防科学与技术, 2020, 39(4):519-521.
[
|
[24] |
|
[25] |
|
[26] |
江苏省第十一届人民代表大会常务委员会. 江苏省消防条例[Z]. 江苏省:江苏省第十一届人民代表大会常务委员会第十八次会议, 2010.
[ Standing Committee of the 11th Jiangsu Province People's Congress. Fire Protection Regulations of Jiangsu Province[Z]. Jiangsu Province:The 18th Meeting of the Standing Committee of the 11th Jiangsu Provincial People's Congress, 2010. ]
|
[27] |
中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 城市消防规划规范 GB 51080-2015[S]. 北京: 中国建筑工业出版社, 2015.
[ Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Code for planning of urban fire control. GB 51080-2015[S]. Beijing: China Architecture & Building Press, 2015. ]
|
[28] |
张辉, 郭超. 基于GIS和响应覆盖率的消防救援站建设评估研究[J]. 消防科学与技术, 2020, 39(8):1107-1110.
[
|
[29] |
唐潭, 韩冰. 城市实时交通圈在消防布局评价中的应用研究——以南京市为例[C]. 2019 (第十四届)城市发展与规划大会,郑州,中国, 2019.
[
|
[30] |
王芹, 谢元礼, 段汉明, 等. 基于实时路况的西安交通拥堵研究[J]. 西北大学学报(自然科学版), 2017, 47(4):622-626.
[
|
[31] |
崔晓临, 张佳蓓, 吴锋, 等. 基于多源数据融合的北京市人口时空动态分析[J]. 地球信息科学学报, 2020, 22(11):2199-2211.
[
|
[32] |
邓敏, 蔡建南, 杨文涛, 等. 多模态地理大数据时空分析方法[J]. 地球信息科学学报, 2020, 22(1):41-56.
[
|
[33] |
南京市统计局. 南京统计年鉴2020[M]. 北京: 中国统计出版社, 2020.
[ Nanjing Municipal Bureau Statistics. Nanjing Statistical Yearbook 2020[M]. Beijing: China Statistical Publishing House, 2020. ]
|
[34] |
|
[35] |
|
[36] |
南京市规划和自然资源局. 南京市城市总体规划(2011-2020)[EB/OL]. http://ghj.nanjing.gov.cn/ghbz/ztgh/201705/t20170509_874089.html,2020-05-26.
[Nanjing Bureau of Planning and Natural Resources. Nanjing Urban Master Plan(2011-2020)[EB/OL]. http://ghj.nanjing.gov.cn/ghbz/ztgh/201705/t20170509_874089.html,2020-05-26.
|
[37] |
|
[38] |
第十三届全国人民代表大会常务委员会. 中华人民共和国消防法[Z]. 北京:第十三届全国人民代表大会常务委员会第十次会议, 2019.
[ Standing Committee of the 13th National People's Congress. Fire Protection Law of the People's Republic of China[Z]. Beijing:The 10th Session of the Standing Committee of the 13th National People's Congress, 2019. ]
|
[39] |
高德地图. 中国主要城市季度交通分析报告——南京市(2018Q1)[EB/OL]. https://report.amap.com/share.do?id=8a38bb8666c9a6d20166cd63d5370440, 2018-04-19.
[Amap. Quarterly traffic analysis report of major cities in China: Nanjing (2018Q1)[EB/OL]. https://report.amap.com/share.do?id=8a38bb8666c9a6d20166cd63d5370440, 2018-04-19.
|
[40] |
高德地图. 中国主要城市季度交通分析报告——南京市(2020Q2)[EB/OL]. https://report.amap.com/share.do?id=8b3776ab731fb18401737b0e006b449a, 2020-07-21.
[Amap. Quarterly traffic analysis report of major cities in China: Nanjing (2020Q2)[EB/OL]. https://report.amap.com/share.do?id=8b3776ab731fb18401737b0e006b449a, 2020-07-21.
|
[41] |
高德地图. 中国主要城市季度交通分析报告——南京市(2020Q3)[EB/OL]. https://report.amap.com/share.do?id=a184b07a753f1d930175547ba5ec1e15, 2020-10-23.
[Amap. Quarterly traffic analysis report of major cities in China: Nanjing (2020Q3)[EB/OL]. https://report.amap.com/share.do?id=a184b07a753f1d930175547ba5ec1e15, 2020-10-23.
|
[42] |
高德地图. 中国主要城市季度交通分析报告——南京市(2020Q4)[EB/OL]. https://report.amap.com/share.do?id=a187b9ae76d07e5c017714372ba90137, 2021-01-18.
[ Amap. Quarterly traffic analysis report of major cities in China: Nanjing (2020Q4)[EB/OL]. https://report.amap.com/share.do?id=a187b9ae76d07e5c017714372ba90137, 2021-01-18.
|
[43] |
王昆仑, 王龙鑫. 浅析城市消防站优化布局[C]. 中国消防协会六届七次理事会暨2019年科学技术年会,北京,中国, 2019.
[
|
/
〈 | 〉 |