基于局地气候分区体系的福州城市热环境研究
林中立(1989— ),男,福建福州人,博士,讲师,主要从事城市环境遥感、城乡规划技术与科学研究。E-mail: linzl@fjut.edu.cn |
收稿日期: 2021-10-25
修回日期: 2021-11-12
网络出版日期: 2022-03-25
基金资助
国家自然科学基金项目(31971639)
福建省自然科学基金项目(2020J05193)
福建省教育厅中青年教师教育科研项目(JAT190403)
福建工程学院科研启动基金(GY-Z19063)
版权
A Study of Urban Thermal Environmental of Fuzhou based on "Local Climate Zones"
Received date: 2021-10-25
Revised date: 2021-11-12
Online published: 2022-03-25
Supported by
National Natural Science Foundation of China(31971639)
National Science Foundation of Fujian Province, China(2020J05193)
Education and Research Project for Youth Scholars of Education Department of Fujian Province, China(JAT190403)
Scientific Research Foundation of Fujian University of Technology(GY-Z19063)
Copyright
局地气候分区体系(LCZ)能够有效建立城市气候与空间形态间的定量关系,揭示城市内部热环境分异特征,是当前备受关注的城市热环境研究方法。本文以我国新晋“火炉城市”福州的主城区为研究区,使用2019年9月22日过空的Landsat-8影像,对基于LCZ的热环境空间分布特征与LCZ类间/类内差异进行分析,并就福州城市热环境的改善提出规划建议。研究表明:① 福州主城区以密集的中、低层连片建筑为主,并呈集聚式分布;② LCZ各类间存在明显的地表温度差异,大型低层建筑(LCZ 8)的温度最高,达41.56 ℃,密集低层建筑(LCZ 3)和工业厂房(LCZ 10)次之,分别为40.90 ℃和40.39 ℃,而茂密树木(LCZ A)和水体(LCZ G)的温度最低,均值为29.94 ℃;③ 根据福州城市发展的时空特征,将主城区分为二环区与三环区进行LCZ类内温度差异的比较分析,可以发现主城区内的主要LCZ建筑类别存在0.5~1.5 ℃的类内差异,造成这一差异的主要成因包括植被、水体等环境要素配置、建筑布局与邻近效应;④ 建筑层高与地表温度呈现显著的负相关关系(r=-0.858, p< 0.001),并且由于高层建筑对太阳辐射的遮挡,其建筑阴影能够部分降低周边相对低矮建筑的表面温度和区域温度;⑤ 在今后的规划中,低矮连片的高密度居住区是改善城市热环境的重点区域,同时高层建筑虽有一定的降温效果,但对于城市风道的阻挡作用不可忽视,应留出足够的城市通风道。
林中立 , 徐涵秋 . 基于局地气候分区体系的福州城市热环境研究[J]. 地球信息科学学报, 2022 , 24(1) : 189 -200 . DOI: 10.12082/dqxxkx.2022.210669
Local Climate Zones (LCZ) can effectively create the quantitative relationship between urban climate and urban spatial form and reveal the spatial variability of urban internal thermal environments. LCZ is a research method of urban thermal environment and has attracted a lot of attention at present. Therefore, this paper applies LCZ to study the spatial characteristics of urban thermal environment and its inter-/intra-zonal variability in Fuzhou City, a recently called “Stove city” in China. Furthermore, the planning strategy for the improvement of the urban thermal environment in Fuzhou is proposed. This study reveals that the main urban area in Fuzhou is dominated by compact mid- and low-rise buildings, which are distributed in a concentrated manner. In addition, the LCZ has obvious inter-zonal variability of land surface temperature (LST). Large low-rise building (LCZ 8) has the highest LST (41.56 ℃), followed by Compact low-rise (LCZ 3) and Heavy industry (LCZ 10) with LST of 40.90 ℃ and 40.39 ℃, respectively, while Dense trees (LCZ A) and Water (LCZ G) have the lowest LST with average LST of 29.94 ℃. At the same time, the intra-zonal LCZ variability also exists. We divides the main urban area into the second and third ring zones and analyzes the LST inter-zonal difference within each LCZ category. It can be found that the main LCZ building types have an inter-zonal difference between 0.5 ℃ and 1.5 ℃. The configuration of environmental factors, such as vegetation and water, buildings layout, and proximity effects, are the main causes of intra-zonal LCZ variability of LST. There is a significant negative correlation between building height and LST (r=-0.858, p<0.001). Moreover, due to the shielding of high-rise buildings from solar radiation, the building shade can partially cool the surface temperature of surrounding relatively low-rise buildings. However, the blocking effect of high-rise buildings on urban ventilation must be avoided. In the future, the contiguous, high-density, low-rise residential areas are the main areas to be controlled for their high temperature, and sufficient ventilation space should be reserved in urban planning.
表1 LCZ分类体系基本类型[9]Tab. 1 Standard type of the LCZ scheme |
建筑类型(Built Types) | |||||
---|---|---|---|---|---|
LCZ 1 密集高层建筑 Compact high-rise (BS: ≥10; SVF: 0.2-0.4; BSF: 40-60; ISF: 40-60; PSF: <10) | LCZ 2 密集中层建筑 Compact mid-rise (BS: 3-9; SVF: 0.3-0.6; BSF: 40-70; ISF: 30-50; PSF: <20) | LCZ 3 密集低层建筑 Compact low-rise (BS: 1-3; SVF: 0.2-0.6; BSF: 40-70; ISF: 20-50; PSF: <30) | |||
![]() | ![]() | ![]() | |||
LCZ 4 开阔高层建筑 Open high-rise (BS: ≥10; SVF: 0.5-0.7; BSF: 20-40; ISF: 30-40; PSF: 30-40) | LCZ 5 开阔中层建筑 Open mid-rise (BS: 3-9; SVF: 0.5-0.8; BSF: 20-40; ISF: 30-50; PSF: 20-40) | LCZ 6 开阔低层建筑 Open low-rise (BS: 1-3; SVF: 0.6-0.9; BSF: 20-40; ISF: 20-50; PSF: 30-60) | |||
![]() | ![]() | ![]() | |||
LCZ 7 轻质低层建筑 lightweight low-rise (BS: 1-2; SVF: 0.2-0.5; BSF: 60-90; ISF: <20; PSF: <30) | LCZ 8 大型低层建筑 Large low-rise (BS: 1-3; SVF: >0.7; BSF: 30-50; ISF: 40-50; PSF: <20) | LCZ 9 零散建筑 Sparsely built (BS: 1-3; SVF: >0.8; BSF: 10-20; ISF: <20; PSF: 60-80) | LCZ 10 工业厂房 Heavy industry (BS: 2-5; SVF: 0.6-0.9;BSF: 20-30;ISF: 20-40; PSF: 40-50) | ||
![]() | ![]() | ![]() | ![]() | ||
土地覆盖类型(Land Cover Types) | |||||
LCZ A 茂密树木 Dense trees (SVF: <0.4; BSF: <10; ISF: <10; PSF: >90; VH: 3-30) | LCZ B 稀疏树木 Scattered trees (SVF: 0.5-0.8; BSF: <10; ISF: <10; PSF: >90; VH: 3-15) | LCZ C 灌木和矮树 Bush, scrub (SVF: <0.7-0.9; BSF: <10; ISF: <10; PSF: >90; VH: <2) | LCZ D 低矮植被 Low plants (SVF: >0.9; BSF: <10; ISF: <10; PSF: >90; VH: <1) | ||
![]() | ![]() | ![]() | ![]() | ||
LCZ E 裸露的岩石或道路 Bare rock or paved (BSF: <10; ISF: >90; PSF: <10) | LCZ F 裸土或沙 Bare soil or sand (BSF: <10; ISF: <10; PSF: >90) | LCZ G 水体 Water (BSF: <10; ISF: <10; PSF: >90) | |||
![]() | ![]() | ![]() |
注:BS(Building Stories):建筑层数/层; SVF(Sky View Factor):天空可视度; BSF(Building Surface Fraction):建筑覆盖度/%; ISF(Impervious Surface Fraction):不透水面(道路、岩石)覆盖度/%;PSF(Pervious Surface Fraction):透水面(裸土、植被、水体)覆盖度/%;VH(Vegetation Height):植被高度/m。 |
表2 局地气候区分类结果统计Tab. 2 Statistics of LCZ classification results |
LCZ类别 | 研究区 | 二环区 | 三环区 | |||||
---|---|---|---|---|---|---|---|---|
面积/km2 | 比例/% | 面积/km2 | 比例/% | 面积/km2 | 比例/% | |||
LCZ 1 密集高层建筑 | 3.61 | 2.21 | 2.05 | 4.66 | 1.56 | 1.30 | ||
LCZ 2 密集中层建筑 | 45.98 | 28.10 | 21.63 | 49.13 | 24.35 | 20.36 | ||
LCZ 3 密集低层建筑 | 41.08 | 25.10 | 6.73 | 15.28 | 34.35 | 28.72 | ||
LCZ 4 开阔高层建筑 | 26.42 | 16.15 | 8.11 | 18.43 | 18.31 | 15.31 | ||
LCZ 5 开阔中层建筑 | 3.77 | 2.30 | 0.46 | 1.05 | 3.30 | 2.76 | ||
LCZ 6 开阔低层建筑 | 6.49 | 3.97 | 0.77 | 1.74 | 5.73 | 4.79 | ||
LCZ 8 大型低层建筑 | 1.90 | 1.16 | 0.11 | 0.25 | 1.79 | 1.50 | ||
LCZ 10 工业厂房 | 0.48 | 0.29 | 0.04 | 0.09 | 0.44 | 0.37 | ||
LCZ A 茂密树木 | 0.19 | 0.11 | 0.00 | 0.00 | 0.19 | 0.16 | ||
LCZ B 稀疏树木 | 14.55 | 8.89 | 1.55 | 3.51 | 13.00 | 10.87 | ||
LCZ C 灌木和矮树 | 1.57 | 0.96 | 0.03 | 0.06 | 1.54 | 1.29 | ||
LCZ D 低矮植被 | 4.62 | 2.83 | 0.44 | 1.00 | 4.18 | 3.50 | ||
LCZ E 裸露的岩石或道路 | 5.96 | 3.64 | 1.26 | 2.86 | 4.70 | 3.93 | ||
LCZ F 裸土或沙 | 7.01 | 4.28 | 0.85 | 1.92 | 6.17 | 5.16 | ||
LCZ G 水体 | 9.34 | 5.71 | 2.39 | 5.42 | 6.96 | 5.82 | ||
合 计 | 163.64 | 100.00 | 44.02 | 100.00 | 119.62 | 100.00 |
表3 局地气候区各类别地表温度统计Tab. 3 Land surface temperature statistics of LCZ classification result |
LCZ类型 | LST/℃ | ||
---|---|---|---|
研究区 | 二环区 | 三环区 | |
LCZ 1 | 37.28 | 36.89 | 37.73 |
LCZ 2 | 38.69 | 38.46 | 38.85 |
LCZ 3 | 40.90 | 40.01 | 41.01 |
LCZ 4 | 36.77 | 36.53 | 36.91 |
LCZ 5 | 36.94 | 36.52 | 37.01 |
LCZ 6 | 38.83 | 38.51 | 38.90 |
LCZ 8 | 41.56 | 39.75 | 41.67 |
LCZ 10 | 40.39 | 38.19 | 40.27 |
LCZ A | 29.29 | - | 29.29 |
LCZ B | 33.05 | 33.48 | 33.07 |
LCZ C | 36.80 | 38.12 | 36.86 |
LCZ D | 35.44 | 35.69 | 35.69 |
LCZ E | 38.93 | 37.30 | 39.26 |
LCZ F | 40.20 | 39.42 | 40.26 |
LCZ G | 30.58 | 30.75 | 30.61 |
表4 地表要素与LST的相关性统计Tab. 4 Pearson correlation coefficients between the indices of land surface elements and LST |
地表要素 表征指数/分量 | 建筑 | 植被 | 水体 | |||||
---|---|---|---|---|---|---|---|---|
IBI | Brightness | NDVI | Greenness | MNDWI | Wetness | |||
r | 0.673** | 0.515** | -0.216** | -0.397** | -0.213** | -0.576** |
注: **p<0.01(双尾)。 |
表5 LCZ 1—LCZ 6在不同区域的环境指标统计Tab. 5 Thermal environment indices statistics of LCZ 1—LCZ 6 in second and third ring regions |
LCZ类别 | IBI | Greenness | Wetness | |||||
---|---|---|---|---|---|---|---|---|
二环区 | 三环区 | 二环区 | 三环区 | 二环区 | 三环区 | |||
LCZ 1 | 0.641 | 0.648 | 0.626 | 0.625 | 0.724 | 0.720 | ||
LCZ 2 | 0.659 | 0.649 | 0.652 | 0.649 | 0.690 | 0.690 | ||
LCZ 3 | 0.718 | 0.719 | 0.628 | 0.620 | 0.634 | 0.631 | ||
LCZ 4 | 0.531 | 0.553 | 0.704 | 0.702 | 0.726 | 0.715 | ||
LCZ 5 | 0.505 | 0.539 | 0.712 | 0.707 | 0.735 | 0.722 | ||
LCZ 6 | 0.621 | 0.626 | 0.701 | 0.701 | 0.671 | 0.664 |
[1] |
IPCC. AR6 Climate Change 2021: The Physical Science Basis[EB/OL].https://www.ipcc.ch/report/ar6/wg1/down loads/report/IPCC_AR6_WGI_Full_Report.pdf, (2021-08-07) [2021-08-20].
|
[2] |
|
[3] |
|
[4] |
侯路瑶, 姜允芳, 石铁矛, 等. 基于气候变化的城市规划研究进展与展望[J]. 城市规划, 2019, 43(3):121-132.
[
|
[5] |
|
[6] |
|
[7] |
陈方丽, 黄媛. 基于WUDAPT方法的成都市局地气候分区地图构建及其规划应用研究[J]. 城市建筑, 2018, 20:29-32.
[
|
[8] |
|
[9] |
|
[10] |
|
[11] |
江斯达, 占文凤, 杨俊, 等. 局地气候分区框架下城市热岛时空分异特征研究进展[J]. 地理学报, 2020, 75(9):66-84.
[
|
[12] |
|
[13] |
|
[14] |
|
[15] |
USGS. Landsat 8 (L8) Data Users Handbook (Version 5.0)[OL]. https://prd-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS-1574_L8_Data_Users_Handbook-v5.0.pdf, (2019-11-26) [2021-08-15].
|
[16] |
林中立, 徐涵秋. 基于LCZ的城市热岛强度研究[J]. 地球信息科学学报, 2017, 19(5):713-722.
[
|
[17] |
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
徐涵秋. 基于城市地表参数变化的城市热岛效应分析[J]. 生态学报, 2011, 31(4):3890-3901.
[
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
林中立, 徐涵秋. 近20年来新旧“火炉城市”热岛状况对比研究[J]. 遥感技术与应用, 2019, 34(3):521-530.
[
|
[33] |
林中立, 徐涵秋. 基于DTR的城市热岛强度指数构建与应用——以福州市为例[J]. 应用基础与工程科学学报, 2017, 25(2):266-275.
[
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
侯浩然, 丁凤, 黎勤生. 近20年来福州城市热环境变化遥感分析[J]. 地球信息科学学报, 2018, 20(3):385-395.
[
|
[39] |
|
[40] |
|
[41] |
唐菲, 徐涵秋. 旧城改造与城市热岛效应关系的遥感研究:以福州市苍霞片区为例[J]. 地理科学, 2011, 31(10):1228-1234.
[
|
[42] |
中华人民共和国住房和城乡建设部, 城市居住区规划设计标准(GB50180-2018)[S/OL]. (2018-07-10) [2021-08-20]. http://www.mohurd.gov.cn/wjfb/201811/t20181130_238590.html.
[ Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for planning and design of urban residential area (GB50180-2018)[EB/OL]. (2018-07-10) [2021-08-20]. http://www.mohurd.gov.cn/wjfb/201811/t20181130_2385 90.html.]
|
[43] |
张雅妮, 曾小洲, 肖毅强. 基于风热环境优化的“山·城共构”城市设计初探——以广州白云新城为例[J]. 城市规划, 2018, 42(12):116-124.
[
|
/
〈 |
|
〉 |