降雨事件对上海地铁通勤客流时空影响的精细尺度研究
黄 盛(1996— ),男,江苏昆山人,硕士,主要从事极端天气对轨道交通的影响研究。E-mail: 240102989@qq.com |
收稿日期: 2021-07-05
要求修回日期: 2021-07-29
网络出版日期: 2022-04-25
基金资助
国家自然科学基金项目(41771540)
国家重点研发计划项目(2017YFC1503001)
国家重点研发计划项目(2019YFB2101600)
版权
A Fine-scale Study on Spatio-temporal Patterns of Metro Commuter Flows under Rainfall Events in Shanghai
Received date: 2021-07-05
Request revised date: 2021-07-29
Online published: 2022-04-25
Supported by
National Natural Science Foundation of China(41771540)
National Key Research and Development Program of China(2017YFC1503001)
National Key Research and Development Program of China(2019YFB2101600)
Copyright
全球气候变化背景下,降雨事件日益增多,严重影响城市交通和居民的日常出行。本文以上海市为例,基于分时降雨数据和地铁OD客流数据,运用Prophet时序模型拟合降雨事件下的客流常态值,从站点和OD二个维度定量评估降雨造成的地铁通勤客流变化时空格局。研究结果表明:① 通勤客流总体随小时雨量增大而下降,不同类型站点客流的降雨波动性呈现差异;降雨会造成进站客流的时间滞后性和堆积性,通勤出行需求越大的站点类型堆积效应越显著;由于出发时间弹性差异,不同时点客流的降雨敏感性也不同,7:00和17:00敏感性较高,8:00—9:00和18:00—19:00则相对刚性;② 降雨会造成行程时间≤15 min的短距离客流显著上升,总体增加7.3%,中长距离客流变化不明显,总体减少1.3%;在不同功能区之间,早高峰居住型→产业型的客流波动和时间堆积性最为显著,晚高峰商服型→居住型的返程客流波动性较低;早高峰降雨敏感性线路的起始站点多分布在大型居住区,晚高峰则位于大型产业园区和商业中心;晚高峰返程客流的波动性低于早高峰。尽管降雨事件对通勤客流总量影响不明显,但会造成局部空间区域和时点的客流激增。本文的研究方法与结果有助于量化降雨对地铁通勤客流的影响程度,并为空间化的交通运行保障提供决策依据。
黄盛 , 李卫江 , 朱梦茹 , 刘振 . 降雨事件对上海地铁通勤客流时空影响的精细尺度研究[J]. 地球信息科学学报, 2022 , 24(2) : 249 -262 . DOI: 10.12082/dqxxkx.2022.210373
In the context of global climate change, extreme precipitation events are becoming more frequent and have an increasing impact on urban commutes. In this study, based on hourly rainfall data and metro OD passenger flow data, we use a prophet time-series model to forecast the regular values of commuting flow under rainfall events, and quantitatively assess the spatial-temporal changes of commuting flow caused by rainfall at station and OD levels. Our results show that (1) the commuting flow generally tends to decrease with increasing hourly rainfall. The fluctuation of commuting flow varies from one type of station to another. Rainfall can delay commuting departure time and lead to surge in metro flow in certain times. The higher the commuting demand for a station, the more its flow fluctuates. Flow fluctuation due to rainfall varies in different time periods. 7:00 and 17:00 show high fluctuation with more flexibility in commuting departure time, while 8:00—9:00 and 18:00—19:00 show high rigidity; (2) Rainfall can induce a significant increase in short commuting flow of less than 15 minutes, averaging to around 7.3%. In contrast, the impact on medium and long commuting flow is modest, with an overall decrease of 1.3%. Of the OD flows across various functional zones, fluctuation from residential to industrial stations is most notable during the morning commute, while less so from commercial to residential stations during the evening commute. Most of the departure stations of rainfall-sensitive metro lines during the morning commute are located around large residential areas, and around large industrial parks and commercial centers during the evening commute. Flow fluctuation in the evening commute is lower than that in the morning commute. Although total commuting flow is not significantly affected by rainfall, its surge in certain local regions and times should be highlighted. Our methodology and results will help to quantify the impact of rainfall on metro commutes and provide a basis for spatialized transport coping strategies.
表1 上海市地铁OD客流数据记录Table 1 Data records for metro passenger flows in Shanghai |
日期 | 时间 | 进站站点编号 | 出站站点编号 | 客流量/人 |
---|---|---|---|---|
2020-05-06 | 08:00 | 0849 | 1239 | 10 |
2020-05-08 | 08:00 | 0925 | 0113 | 20 |
2020-06-05 | 08:00 | 0921 | 1145 | 13 |
表2 上海市不同通勤时点客流波动幅度与降雨量关系Table 2 Relationship between flow fluctuations and rainfall at various commuting times in Shanghai |
通勤时点 | 站点类型 | |||
---|---|---|---|---|
居住型 | 混合型 | 产业型 | 商服型 | |
7:00 | y=-0.0045x-0.0118 R²=0.286 | y=0.0035x+0.0010 R²=0.231 | - | y=-0.0021x+0.0220 R²=0.201 |
8:00 | y=-0.0021x+0.0408 R²=0.205 | y=-0.0088x+0.0312 R²=0.151 | y=-0.0072x+0.0185 R²=0.151 | - |
9:00 | y=-0.0011x-0.0129 R²=0.155 | - | y=-0.0101x+0.0490 R²=0.142 | - |
17:00 | y=-0.0052x-0.0531 R²=0.212 | y=-0.0280x-0.0272 R²=0.181 | y=-0.0072x+0.0101 R²=0.194 | y=-0.0039x+0.0076 R²=0.274 |
18:00 | - | - | - | y=-0.0007x+0.0145 R²=0.164 |
19:00 | - | - | - | y=0.0012x-0.0139 R²=0.155 |
注:“-”表示拟合方程P>0.05,不显著;公式中y代表客流波动幅度,x代表降雨量。 |
图10 上海市早高峰居住型站点客流波动幅度与雨强关系Fig. 10 Relationship between flow fluctuations and rainfall during the morning commute at residential metro stations in Shanghai |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
易嘉伟, 王楠, 千家乐, 等. 基于大数据的极端暴雨事件下城市道路交通及人群活动时空响应[J]. 地理学报, 2020, 75(3):497-508.
[
|
[7] |
|
[8] |
2020年上海市综合交通运行年报[R]. 上海:上海市城乡建设和交通发展研究院, 2020.
[ Annual report of Shanghai comprehensive transportation operation in 2020[R]. Shanghai: Shanghai Urban-Rural Construction and Transportation Development Research Institute, 2020. ]
|
[9] |
|
[10] |
|
[11] |
李梦雅. 暴雨内涝情景下城市通勤出行的暴露度与交通特征研究——以上海中心城区为例[D]. 上海:华东师范大学, 2019.
[
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
许熳灵, 付晓, 汤君友, 等. 天气因素对城市地铁客流时空分布的影响——基于智能交通卡数据的实证研究[J]. 地理科学进展, 2020, 39(1):45-55.
[
|
[20] |
|
[21] |
|
[22] |
王梦江. 上海市防汛工作手册[M].复旦大学出版社, 2018.
[
|
[23] |
金昱. 城市轨道交通站点客流时变特征及其影响因素研究——以上海为例[J]. 现代城市研究, 2015, 30(6):13-19.
[
|
[24] |
吕帝江, 李少英, 谭章智, 等. 地铁站点多时间维度客流影响因素的精细建模——以广州市中心城区为例[J]. 地理与地理信息科学, 2019, 35(3):58-65.
[
|
[25] |
张文彤, 董伟. SPSS 统计分析高级教程(2版)[M]. 北京: 高等教育出版社, 2013.
[
|
[26] |
池娇, 焦利民, 董婷, 等. 基于POI数据的城市功能区定量识别及其可视化[J]. 测绘地理信息, 2016, 41(2):68-73.
[
|
[27] |
龙瀛, 张宇, 崔承印. 利用公交刷卡数据分析北京职住关系和通勤出行[J]. 地理学报, 2012, 67(10):1339-1352.
[
|
[28] |
|
[29] |
|
[30] |
李军龙. 雨雪天气下居民轨道交通出行生成机理研究[D]. 南京:东南大学, 2018.
[
|
[31] |
黄洁, 王姣娥, 靳海涛, 等. 北京市地铁客流的时空分布格局及特征——基于智能交通卡数据[J]. 地理科学进展, 2018, 37(3):397-406.
[
|
[32] |
|
[33] |
|
[34] |
孟斌, 黄松, 尹芹. 北京市居民地铁出行出发时间弹性时空分布特征研究[J]. 地球信息科学学报, 2019, 21(1):107-117.
[
|
[35] |
|
[36] |
杜彩军, 蒋玉琨. 城市轨道交通与其他交通方式接驳规律的探讨[J]. 都市快轨交通, 2005, 18(3):45-49.
[
|
/
〈 |
|
〉 |