多源大数据支持的土地储备智能决策模型集研究
李 军(1987— ),男,湖北汉川人,副教授,主要从事地理信息科学理论与方法应用研究。E-mail: junli@cumtb.edu.cn |
收稿日期: 2021-02-18
要求修回日期: 2021-03-28
网络出版日期: 2022-04-25
基金资助
国家自然科学基金项目(41971355)
国家重点研发计划项目(2018YFB0505405)
中国矿业大学(北京)越崎青年学者资助计划
中央高校基本科研业务费专项资金资助(2015QD01)
版权
An Intelligent Decision Model Set for Land Reserve based on Multi-source Big Data
Received date: 2021-02-18
Request revised date: 2021-03-28
Online published: 2022-04-25
Supported by
National Natural Science Foundation of China(41971355)
National Key Research and Development Program of China(2018YFB0505405)
the Yueqi Young Scholar Project of China University of Mining and Technology at Beijing
the Fundamental Research Funds for the Central Universities(2015QD01)
Copyright
伴随着城镇化的快速推进,城乡建设用地资源日益紧张,但目前土地储备决策缺乏精准科学依据,无法有效地进行资源配置和宏观调控。针对此问题,本文深入剖析土地储备基本业务与决策环节,研究了一套面向土地储备的智能决策模型集,包括存量土地监测模型、收储成本预测模型、出让价格预测模型、储备平衡分析模型、相似地块分析模型、开发时序分析模型及病态地块识别模型,旨在将土地储备决策环节科学化、定量化和模型化,并重点为土地储备总量、效益、规模、结构、布局、时序的统筹安排提供建议。另外,该模型集具有体系化、高效灵活、智能化的特点,能够服务于储备业务全链条,满足即时决策应用需求和实现模型自主更新与进化,保证模型的时效性。最后,该模型集已经工程化应用于宁波市土地储备智能决策支持平台,实践验证了以上决策模型具有较高的准确度和实用性,表明模型集能够为土地储备的科学决策提供理论依据,有利于土地资源的集约利用和高效配置。
李军 , 刘举庆 , 游林 , 董恒 , 俞艳 , 张晓盼 , 钟文军 , 杨典华 . 多源大数据支持的土地储备智能决策模型集研究[J]. 地球信息科学学报, 2022 , 24(2) : 299 -309 . DOI: 10.12082/dqxxkx.2022.210079
With the rapid development of urbanization, urban construction land is becoming increasingly scarce. Therefore, as a macro-regulation policy for the intensive utilization and optimal allocation of land resources, land reserve is playing an increasingly important role. However, at present, land reserve decision-making lacks scientific basis and cannot effectively carry out resource allocation. In order to solve this problem, this paper puts forward seven intelligent decision-making models for land reserve through in-depth analysis of the basic services and decision-making processes of land reserves. The models are listed below. Firstly, Stock Land Monitoring Model based on the comprehensive quantitative evaluation method, which can dynamically monitor and discover the city stock land and then make recommendations for land reserve objects. Secondly, Land Reserve Cost Prediction Model based on the market comparison method, which can carry out a large range and efficiently predict the cost of stock land. Thirdly, Land Sale Price Prediction Model based on the Support Vector Machine (SVM), which can predict the reserve income of the land to be sold. Fourthly, Land Reserve Balance Analysis Model based on the gray forecast model, which can predict the amount of land reserve to promote coordinated regional development. Fifthly, Similar Land Query Model based on the comprehensive quantitative evaluation method, which can promote large-scale land development to form an agglomeration effect. Sixthly, Development Sequence Analysis Model based on the comprehensive quantitative evaluation method, which can optimize the spatial structure and formulate a reasonable development sequence to promote the continuous rolling of funds. Seventhly, Abnormal Land Identification Model based on spatial overlay analysis, which can improve the detection efficiency of various problematic plots. The purpose of this model set is to make the land reserve decision-making process scientific, quantitative, and model-based, which focuses on providing instructions for the overall arrangement of total land reserve, benefit, scale, structure, layout, and time sequence. In addition, through theoretical analysis and practical verification, we found that the model set has the characteristics of systematization, high efficiency, flexibility, and intelligence. It can serve the entire chain of land reserve service, meet the needs of real-time decision-making applications, and realize the independent update and evolution to ensure the timeliness of model computation. Finally, the model set has been engineered and applied to the Ningbo Land Reserve Intelligent Decision Support Platform. The effectiveness and practicality of the above decision-making models have been verified by simulating the entire land reserve decision-making processes based on this platform, indicating that the model set can provide a theoretical basis for the scientific decision-making of land reserves.
表1 后验差检验模型精度等级Tab. 1 The accuracy level of the posterior error test model |
精度等级 | 优 | 良 | 中 | 差 |
---|---|---|---|---|
P | >0.95 | >0.8 | >0.7 | ≤0.7 |
C | <0.35 | <0.5 | <0.65 | ≥0.65 |
注:P为后验指标小误差概率,C为后验指标方差比。 |
[1] |
国家统计局. 2018年国民经济和社会发展统计公报[EB/OL]. http://www.stats.gov.cn/tjsj/zxfb/201902/t20190228_1651265.html, 2019-02-28.
[National Bureau of Statistics. 2018 statistical bulletin on national economic and social development[EB/OL]. http://www.stats.gov.cn/tjsj/zxfb/201902/t20190228_1651265.html, 2019-02-28.
|
[2] |
夏柱智. 城市化进程中的土地制度改革比较研究—— 基于苏南和珠三角的经验[J]. 社会科学, 2019(2):81-88.
[
|
[3] |
|
[4] |
李明超. 城市土地征收、储备、出让改革联动述论[J]. 西部论坛, 2017, 27(5):54-63.
[
|
[5] |
高霞, 朱德米. 中国土地储备政策演进的结构特征[J]. 城市问题, 2017(12):72-80.
[
|
[6] |
黄海, 祝国瑞. 基于模糊神经网络的土地合理储备量预测研究[J]. 武汉大学学报·信息科学版, 2006, 31(6):561-563.
[
|
[7] |
|
[8] |
|
[9] |
刘鹏, 关丽, 罗晓燕. 基于GIS的城市建设用地资源潜力评价初探[J]. 地理与地理信息科学, 2011, 27(5):69-73.
[
|
[10] |
|
[11] |
董冠鹏, 张文忠, 武文杰, 等. 北京城市住宅土地市场空间异质性模拟与预测[J]. 地理学报, 2011, 66(6):750-760.
[
|
[12] |
|
[13] |
|
[14] |
|
[15] |
李德仁, 马军, 邵振峰. 论时空大数据及其应用[J]. 卫星应用, 2015(9):7-11.
[
|
[16] |
|
[17] |
吴志峰, 曹峥, 宋松, 等. 粤港澳大湾区湿地遥感监测与评估:现状、挑战及展望[J]. 生态学报, 2020, 40(23):8440-8450.
[
|
[18] |
|
[19] |
陈能成, 刘迎冰, 盛浩, 等. 智慧城市时空信息综合决策关键技术与系统[J]. 武汉大学学报·信息科学版, 2018, 43(12):2278-2286.
[
|
[20] |
|
[21] |
|
[22] |
秦萧, 甄峰, 李亚奇, 等. 国土空间规划大数据应用方法框架探讨[J]. 自然资源学报, 2019, 34(10):2134-2149.
[
|
[23] |
|
[24] |
李燕萍, 虞虎, 王昊, 等. 面向大数据时代的城市规划研究响应与应对方略[J]. 城市发展研究, 2017, 24(10):1-10.
[
|
[25] |
喻文承, 李晓烨, 高娜, 等. 北京国土空间规划“一张图”建设实践[J]. 规划师, 2020, 36(2):59-64,77.
[
|
[26] |
李满春, 陈振杰, 周琛, 等. 面向“一张图”的国土空间规划数据库研究[J]. 中国土地科学, 2020, 34(5):69-75.
[
|
[27] |
|
[28] |
蒋希冀, 王静, 王兰. 基于多源数据的城市功能布局优化研究:以上海市宝山区为例[J]. 现代城市研究, 2020, 35(5):2-9,37.
[
|
[29] |
|
[30] |
杨振山, 苏锦华, 杨航, 等. 基于多源数据的城市功能区精细化研究——以北京为例[J]. 地理研究, 2021, 40(2):477-494.
[
|
[31] |
屠李, 赵鹏军, 张超荣, 等. 面向新一代人工智能的城市规划决策系统优化[J]. 城市发展研究, 2019, 26(1):54-59.
[
|
[32] |
张芳芳, 沈少青, 陈学业, 等. 智慧城市规划云平台的设计与实现[J]. 测绘通报, 2019(1):123-126.
[
|
[33] |
李军, 刘举庆, 游林, 等. 时空大数据支持的土地储备智能决策体系与应用研究[J]. 中国土地科学, 2019, 33(9):111-120.
[
|
[34] |
卢新海, 邓中明. 对我国城市土地储备制度的评析[J]. 城市规划汇刊, 2004(6):27-33,95.
[
|
[35] |
崔建远, 陈进. 土地储备制度的现状与完善[M]. 北京: 中国人民大学出版社, 2014.12-14.
[
|
[36] |
姜华, 王蔚炫, 毛勇龙, 等. 多规融合导向下宁波土地储备规划方法研究[J]. 规划师, 2018, 34(7):106-109,115.
[
|
[37] |
鲍艳, 胡振琪, 王建峰, 等. 层次分析法在土地开发中的适宜性评价[J]. 西安科技大学学报, 2005, 25(2):179-182.
[
|
[38] |
|
[39] |
王秀丽, 李恒凯, 刘小生. 基于GIS的房地产市场比较法评估模型研究[J]. 中国土地科学, 2011, 25(10):70-76,97.
[
|
[40] |
|
[41] |
刘思峰, 党耀国, 方志耕. 灰色系统理论及其应用[M].5版. 北京: 科学出版社, 2010.
[
|
[42] |
李鹏山, 吕雅慧, 张超, 等. 基于核密度估计的京津冀地区耕地破碎化分析[J]. 农业机械学报, 2016, 47(5):281-287.
[
|
[43] |
|
/
〈 |
|
〉 |