面向大规模空间Agent建模的分布式地理模拟框架
曾梦熊(1986— ),男,湖南湘乡人,博士生,主要从事地理信息系统开发与应用研究。E-mail: dreambearzmx@sina.com |
收稿日期: 2022-01-01
要求修回日期: 2022-03-08
网络出版日期: 2022-07-25
基金资助
国家重点研发计划项目(2021YFB3900900)
版权
A Distributed Geospatial Simulation Framework for Massive Spatial Agent-Based Modeling
Received date: 2022-01-01
Request revised date: 2022-03-08
Online published: 2022-07-25
Supported by
National Key Research and Development Program of China(2021YFB3900900)
Copyright
基于Agent建模的地理模拟是认识和理解动态地理现象的有效方法,但随着地理模拟的规模和复杂性不断增加,模型的计算问题开始凸显。分布式并行仿真是解决大规模Agent复杂模拟计算的途径,然而已有研究基于Agent建模/仿真软件构建并行仿真系统的方式并不适用于具有高移动与行为交互的空间Agent建模及其模拟过程的实时可视化。为解决这个问题, 本文提出了一个分布式地理模拟框架DGSimF,用于大规模动态空间Agent模拟,支持模拟过程的实时表示与分析。设计了一个简单但高效的时空数据模型建模空间Agent,支持直接基于Agent行为建模集成地学模型,采用了时间微分方法协同各计算节点行为的执行,实现以“任务并行”的方式进行分布式计算以提高仿真性能,构建了基于三维地球渲染引擎的虚拟地理环境,提供模拟过程的实时可视化。最后,以“红蓝对抗”案例进行了实验验证,对不同模拟计算量和不同客户端数量下的仿真性能进行了分析,结果表明DGSimF可以为具有时空特征变化与行为交互的大规模空间Agent模拟提供一个有效的平台。通过扩展计算节点,DGSimF可以有效地缓解复杂模拟计算的压力问题,并且仿真性能较高,在实验中并行效率保持在0.7以上。
曾梦熊 , 华一新 , 张政 , 张江水 , 杨振凯 , 韦原原 . 面向大规模空间Agent建模的分布式地理模拟框架[J]. 地球信息科学学报, 2022 , 24(5) : 815 -826 . DOI: 10.12082/dqxxkx.2022.220001
Geospatial simulation based on agent-based modeling is an effective method to recognize and understand dynamic geographic phenomena. As the scale and complexity of geospatial simulation continues to increase, the challenges in model computation increase. Distributed parallel simulation could be used to solve the complex simulation issue of large-scale agents. However, the existing research on building parallel simulation system based on agent modeling/simulation software is not suitable for modeling of spatial agent with high-mobility and behavioral interaction with others, and real-time visualization of simulation process. To solve this problem, this paper proposes a distributed geospatial simulation framework, namely DGSimF, for massive dynamic spatial agent modeling, which supports real-time representation and analysis of the simulation process. A simple but efficient spatial modeling agent for spatial-temporal data is designed, which supports the modeling of integrated geoscience models directly based on agent behavior, adopts the time differentiation method to coordinate the execution of the behavior of each computing node, supports distributed computation in the way of "task parallel" to improve the simulation performance, and constructs a Virtual Geographic Environment (VGE) based on three-dimensional earth rendering engine to support real-time visualization of intermediate simulation results. Finally, the experiments based on the "Red vs. Blue" case are carried out, and the simulation performance with different computation cost and different number of clients is analyzed. The results show that DGSimF can provide an effective platform for massive spatial agent simulation of spatio-temporal feature change and behavior interaction. By expanding the computing nodes, the pressure of complex simulation calculation can be effectively alleviated. Meanwhile, the simulation performance of the proposed framework is high, and the parallel efficiency remains above 0.7 in these experiments.
表1 空间Agent模拟分布式并行仿真实验系统配置Tab. 1 The detailed configuration of distributed parallel simulation experiment system for spatial agent |
类型 | STDB | DSIME | 客户端#1 | 客户端#2 | 客户端#3 | 管理端 |
---|---|---|---|---|---|---|
数量 | 1 | 3 | 1 | 1 | 1 | 1 |
CPU | Intel Xeon E5-2620(6×12 cores, 2.4GHz) | Intel Xeon E5-2620(6×12 cores,2.4 GHz) | Intel Core i7-6700(4×8 cores,3.4 GHz) | Intel Core i7-7700HQ (4×8 cores, 2.8 GHz) | Intel Core i7-6700(4×8 cores, 3.40 GHz) | Intel Core i7-10750 (6×12 cores,2.6 GHz) |
内存 | 32 GB (2133 MHz) | 32 GB (2133 MHz) | 8 GB (2133 MHz) | 16 GB (2400 MHz) | 16 GB (2933 MHz) | 16 GB (3200 MHz) |
硬盘 | 12 TB (10krpm,SAS) | 12 TB (10krpm,SAS) | 1 TB (7.5krpm,SAS) | 1 TB (7.5krpm,SAS) | 2 TB (7.5krpm,SAS) | 1 TB (7.5krpm,SAS) |
内核 | 3.10.0-327.el7.x86_64 | 3.10.0-327.el7.x86_64 | ||||
操作系统 | CentOS 7 | CentOS 7 | Windows 10 | Windows 10 | Windows 10 | Windows 10 |
表2 2个客户端并行仿真实验结果Tab. 2 The results of parallel simulation by two clients |
计算量/s | T(1)/s | T(2) /s | S(2) | E(2) |
---|---|---|---|---|
0.2 | 7083 | 4218 | 1.6792 | 0.8396 |
1 | 13 164 | 7461 | 1.7644 | 0.8822 |
3 | 24 912 | 12 711 | 1.9599 | 0.9799 |
5 | 37 470 | 19 101 | 1.9617 | 0.9808 |
7 | 49 932 | 25 629 | 1.9483 | 0.9741 |
9 | 61 488 | 31 473 | 1.9537 | 0.9768 |
表3 3个客户端并行仿真实验结果Tab. 3 The results of parallel simulation by three clients |
计算量/s | T(1) /s | T(3) /s | S(3) | E(3) |
---|---|---|---|---|
0.2 | 7083 | 3309 | 2.1405 | 0.7135 |
3 | 24 912 | 10215 | 2.4388 | 0.8129 |
7 | 37 470 | 17 352 | 2.8776 | 0.9592 |
9 | 61 488 | 21 702 | 2.8333 | 0.9444 |
表4 不同个体数量两个客户端并行仿真实验结果Tab. 4 The results of parallel simulation by two clients with different number of agents |
计算量/s | 26 个空间Agent | 1026 个空间Agent | ||
---|---|---|---|---|
S(2) | E(2) | S(2) | E(2) | |
0.2 | 1.0858 | 0.5429 | 1.6792 | 0.8396 |
1 | 1.2926 | 0.6463 | 1.7644 | 0.8822 |
3 | 1.4210 | 0.7105 | 1.9599 | 0.9799 |
5 | 1.5623 | 0.7811 | 1.9617 | 0.9808 |
[1] |
|
[2] |
余强毅, 吴文斌, 唐华俊, 等. 复杂系统理论与Agent模型在土地变化科学中的研究进展[J]. 地理学报, 2011, 66(11):1518-1530.
[
|
[3] |
翟瑞雪, 戴尔阜. 基于主体模型的人地系统复杂性研究[J]. 地理研究, 2017, 36(10):1925-1935.
[
|
[4] |
|
[5] |
|
[6] |
潘茂林, 陶海燕. JAVA-SWARM与GIS集成研究——以城市地理模拟为例[J]. 系统仿真学报, 2009, 21(18):5704-5708.
[
|
[7] |
黎夏, 李丹, 刘小平. 地理模拟优化系统(GeoSOS)及其在地理国情分析中的应用[J]. 测绘学报, 2017, 46(10):1598-1608.
[
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
赵耀龙, 张珂, 彭永俊, 等. 基于地理模拟方法的昆明市空间拓展情景分析[J]. 地理研究, 2014, 33(1):119-131.
[
|
[19] |
|
[20] |
|
[21] |
|
[22] |
林珲, 胡明远, 陈旻, 等. 从地理信息系统到虚拟地理环境的认知转变[J]. 地球信息科学学报, 2020, 22(4):662-672.
[
|
[23] |
林珲, 黄凤茹, 闾国年. 虚拟地理环境研究的兴起与实验地理学新方向[J]地理学报, 2009, 64(1):7-20.
[
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
/
〈 |
|
〉 |