多目标优化NSGA系列算法与地理决策:原理、现状与展望
高培超(1991— ),男,河南长葛人,讲师,硕士生导师,研究方向为信息地理学。E-mail: gaopc@bnu.edu.cn |
收稿日期: 2022-04-22
修回日期: 2022-06-18
网络出版日期: 2023-03-25
基金资助
中国科学院“美丽中国生态文明建设科技工程”A类战略性先导科技专项(XDA23100303)
第二次青藏高原综合考察研究(2019QZKK0608)
国家自然科学基金(42171088)
国家自然科学基金(42171250)
NSGA Multi-objective Optimization Algorithms and Geographic Decision-making: Principles, State of the Art, and the Future
Received date: 2022-04-22
Revised date: 2022-06-18
Online published: 2023-03-25
Supported by
Strategic Priority Research Program of the Chinese Academy of Sciences(XDA23100303)
Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0608)
National Natural Science Foundation of China(42171088)
National Natural Science Foundation of China(42171250)
地理学正在经历“剧变”时代,愈发强调决策支持。地理决策过程中往往涉及众多因素,需要通盘考量不同因素、权衡利弊,并提出最优方案,是典型的多目标优化过程。数学领域的多目标优化算法因而在地理决策中具有广阔的应用潜力和重要意义,其最新进展是地理学中新方法、新工具的重要来源。本文综述了多目标优化领域最前沿、最流行的算法代表“非支配排序遗传系列算法”(Nondominated Sorting Genetic Algorithms, NSGAs),对其三代不同算法的原理、适用性进行对比,并综述了这些算法在地理决策领域的应用现状、改进方法、问题与局限。研究发现:在三代算法中,NSGA-II因其在计算复杂性和使用场景方面的优势在地理决策中最为流行;NSGA-III对建模要求较高,尚未得到广泛关注。在地理决策的各领域中,水资源管理领域是NSGA算法应用最多、最成熟的领域,该领域的问题建模和在NSGA算法中融入局部搜索的经验值得其它领域借鉴和推广;土地利用规划领域提出了较多的NSGA改进算法,为更好地融合NSGA算法进行地理决策树立了典范。未来研究中,可通过凝练行业共性问题、构建通用优化模型降低NSGA算法的应用门槛。建议通过深入结合局部搜索的方式提升NSGA算法的收敛速度,同时建议在地理过程模拟中深入融合NSGA等多目标优化算法。
关键词: 地理决策; 多目标优化; 非支配排序遗传系列算法; 帕里托最优解
高培超 , 王昊煜 , 宋长青 , 程昌秀 , 沈石 . 多目标优化NSGA系列算法与地理决策:原理、现状与展望[J]. 地球信息科学学报, 2023 , 25(1) : 25 -39 . DOI: 10.12082/dqxxkx.2023.220214
The focus of geography is shifting from qualitative descriptions and quantitative analysis to support decision-making. The process of geographic decision-making usually involves multiple factors to consider and balance to achieve an optimal solution. It is a typical process of multi-objective optimization. Thus, multi-objective optimization algorithms from the field of mathematics are fundamental and have great potential to be applied in geographic decision-making. New algorithms of multi-objective optimization serve as an important source of new methods and tools for geography. This paper reviews a series of Nondominated Sorting Genetic Algorithms (NSGA-I/II/III), which are among the cutting edge and most popular algorithms in the field of multi-objective optimization. This review summarizes the principles, applications, improvements, and problems of these NSGA algorithms. Our findings include: NSGA-II is the most popular algorithm among the series because of its low computational complexity and high usability; NSGA-III has few applications in geographic decision-making for its sophisticated principles; currently, water resource management is the most successful field in applying the NSGA algorithms, and the experiences from this field are of use to others; and land use planning is the most successful field in improving the NSGA algorithms, making the NSGA algorithms more applicable to geographic decision-making. In the future, it is necessary to reduce the difficulty of applying the NSGA algorithms by summarizing typical issues in geographic decision-making and by developing user-friendly software tools for geographers. The efficiency of the NSGA algorithms can be further improved by coupling local searching strategies. It is also recommended to deeply incorporate the NSGA algorithms into the processes of geographic simulations.
表1 NSGA-I、II、III算法的对比Tab. 1 Comparison of NSGA-I, II and III |
算法 | 快速非支配排序 | 解密度的计算方式 | 精英保留 | 时间复杂度 |
---|---|---|---|---|
I | 否 | 适宜度的分享 | 否 | |
II | 是 | 拥挤距离 | 是 | |
III | 是 | 关联至归一化超平面上的参考点 | 是 |
[1] |
宋长青, 张国友, 程昌秀, 等. 论地理学的特性与基本问题[J]. 地理科学, 2020, 40(1):6-11.
[
|
[2] |
傅伯杰. 地理学:从知识、科学到决策[J]. 地理学报, 2017, 72(11):1923-1932.
[
|
[3] |
宋长青. 地理学研究范式的思考[J]. 地理科学进展, 2016, 35(1):1-3.
[
|
[4] |
樊杰. 地理学的综合性与区域发展的集成研究[J]. 地理学报, 2004, 59(S1):33-40.
[
|
[5] |
傅伯杰. 地理学综合研究的途径与方法:格局与过程耦合[J]. 地理学报, 2014, 69(8):1052-1059.
[
|
[6] |
宋长青, 程昌秀, 杨晓帆, 等. 理解地理“耦合”实现地理“集成”[J]. 地理学报, 2020, 75(1):3-13.
[
|
[7] |
程昌秀, 史培军, 宋长青, 等. 地理大数据为地理复杂性研究提供新机遇[J]. 地理学报, 2018, 73(8):1397-1406.
[
|
[8] |
宋长青, 程昌秀, 史培军. 新时代地理复杂性的内涵[J]. 地理学报, 2018, 73(7):1204-1213.
[
|
[9] |
|
[10] |
|
[11] |
|
[12] |
焦利民, 刘耀林. 可持续城市化与国土空间优化[J]. 武汉大学学报·信息科学版, 2021, 46(1):1-11.
[
|
[13] |
|
[14] |
欧名豪, 丁冠乔, 郭杰, 等. 国土空间规划的多目标协同治理机制[J]. 中国土地科学, 2020, 34(5):8-17.
[
|
[15] |
中华人民共和国自然资源部. 西藏自治区土地利用总体规划(2006-2020年)[EB/OL].(2011-7-25). Available online: http://www.mnr.gov.cn/gk/ghjh/201811/t20181101_2324752.html
[Ministry of Natural Resources of the People’s Republic of China. Land use plan of Tibet Autonomous Region (2006-2020)[EB/OL]. (2011-7-25). Available online: http://www.mnr.gov.cn/gk/ghjh/201811/t20181101_2324752.html. ]
|
[16] |
方创琳, 王振波, 刘海猛. 美丽中国建设的理论基础与评估方案探索[J]. 地理学报, 2019, 74(4):619-632.
[
|
[17] |
|
[18] |
郑思齐, 徐杨菲, 张晓楠, 等. “职住平衡指数”的构建与空间差异性研究:以北京市为例[J]. 清华大学学报(自然科学版), 2015, 55(4):475-483.
[
|
[19] |
马小姝, 李宇龙, 严浪. 传统多目标优化方法和多目标遗传算法的比较综述[J]. 电气传动自动化, 2010, 32(3):48-50,53.
[
|
[20] |
王海军, 夏畅, 张安琪, 等. 利用生物地理学优化算法获取城市扩展元胞自动机模型参数[J]. 武汉大学学报·信息科学版, 2017, 42(9):1323-1329.
[
|
[21] |
刘耀林, 洪晓峰, 刘殿锋, 等. 利用模拟退火算法的村镇土地利用空间优化调控模型[J]. 武汉大学学报·信息科学版, 2011, 36(6):752-755.
[
|
[22] |
张鸿辉, 曾永年, 尹长林, 等. 城市土地利用空间优化配置的多智能体系统与微粒群集成优化算法[J]. 武汉大学学报·信息科学版, 2011, 36(8):1003-1007.
[
|
[23] |
刘耀林, 赵翔, 刘殿锋. 土地利用优化配置人工免疫并行决策支持系统[J]. 武汉大学学报·信息科学版, 2014, 39(2):166-171.
[
|
[24] |
肖晓伟, 肖迪, 林锦国, 等. 多目标优化问题的研究概述[J]. 计算机应用研究, 2011, 28(3):805-808,827.
[
|
[25] |
李金忠, 夏洁武, 曾小荟, 等. 多目标模拟退火算法及其应用研究进展[J]. 计算机工程与科学, 2013, 35(8):77-88.
[
|
[26] |
郑友莲, 樊俊青. 多目标粒子群优化算法研究[J]. 湖北大学学报(自然科学版), 2008, 30(4):351-355.
[
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
刘玉, 王海起, 侯金亮, 等. 基于多目标遗传算法的空间优化选址方法研究[J]. 地理空间信息, 2018, 16(3):26-29,8.
[
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
高会然, 秦承志, 朱良君, 等. 以坡位为空间配置单元的流域管理措施情景优化方法[J]. 地球信息科学学报, 2018, 20(6):781-790.
[
|
[52] |
史亚星, 朱良君, 秦承志, 等. 基于坡位-地块单元的流域最佳管理措施空间优化配置方法[J]. 地球信息科学学报, 2021, 23(4):564-575.
[
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
[
|
[59] |
徐伟铭, 陆在宝, 肖桂荣. 基于遗传算法的水土保持措施空间优化配置[J]. 中国水土保持科学, 2016, 14(6):114-124.
[
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
王世忠, 刘卫东, 曹振宇. 基于NSGA-Ⅱ的土地利用数量结构优化研究——以舟山市定海区为例[J]. 地理科学, 2010, 30(2):290-294.
[
|
[67] |
邓润, 唐宏, 单越, 等. 面向应急任务卫星鲁棒性规划模型及算法[J]. 遥感信息, 2014, 29(5):25-31,50.
[
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
王海军, 曾浩然, 张文婷, 等. 基于改进的GPU并行NSGA-Ⅲ的土地利用优化配置[J]. 农业工程学报, 2020, 36(21):283-291.
[
|
[77] |
王昊煜, 高培超, 谢一茹, 等. 基于改进型NSGA-Ⅱ算法的西宁市土地利用多目标优化[J]. 地理与地理信息科学, 2020, 36(6):84-89.
[
|
[78] |
|
[79] |
|
[80] |
李新, 袁林旺, 裴韬, 等. 信息地理学学科体系与发展战略要点[J]. 地理学报, 2021, 76(9):2094-2103.
[
|
[81] |
|
[82] |
吴辉, 刘永波, 秦承志, 等. 流域最佳管理措施情景优化算法的并行化[J]. 武汉大学学报·信息科学版, 2016, 41(2):202-207.
[
|
[83] |
高培超, 程昌秀, 叶思菁, 等. 空间玻尔兹曼熵的研究进展与应用[J]. 地理学报, 2021, 76(7):1579-1590.
[
|
[84] |
ISO. Part 11: Guidance on usability[M]. ISO 9241:Ergonomic Requirements for Office Work with Visual Display Terminals (VDTs). Switzerland: International Organization for Standardization, 2008.
|
/
〈 |
|
〉 |